

Welcome to RobusTest 2.0 Documentation!

Contents:

	1. Introduction

	2. Getting Started

	3. Project

	4. Project Dashboard

	Manual Testing
	1. Device Configuration Menu

	2. Session Configuration Menu

	1. Multi-device testing

	3. Test Embedded Video

	RobusTest Automator
	1. Recording user actions

	2. Test Step Management

	3. Test Session - Device Management

	4. Test Session - Test Case Management

	5. Test Session - Session Management

	6. Creating and Managing Test Cases

	5. Executing Test Runs
	Understanding Test Suites

	Creating and Executing a Test Run

	6. Run Settings

	7. Live View

	8. Performance Testing

	9. Automation Reports
	Debugging Test Case Failures

	Advanced Automation Concepts
	1. Verification
	1.1. Using the ‘Verify Element’ option

	1.2. Using the ‘Verification’ button option

	1.3. Verify that an element exists

	1.4. Invert Verification

	2. Functions

	3. Parameterisation of Data
	3.1. Mapping to Step

	3.2. Mapping to Data Set

	10. Scheduling your tests

	11. RobusTest Hub
	Appium Hub
	Run Appium Tests

	Organize Appium Sessions Into Test Cases

	Appium Test Data

	Appium Hub to Find Locators

	Running tests for your Unity based app on the RobusTest Hub

	Run Espresso Tests

	Run XCUITest Tests

	Run Selenium Tests

	12. User Profile

	13. Health page

	14. Admin Console

	15. Continuous Integration

	16. Integrating Bug Tracker

	17. Other Useful Information
	Adding new devices to RobusTest - Android

	Adding new devices to RobusTest - iOS

	Best Practices in Automating Tests using RobusTest

	18. RobusTest Connect - Run local, test global

	Troubleshooting
	1. Unable to access RobusTest Server

1. Introduction

RobusTest is the app testing platform for all things mobile. Internally, we like to call it the Swiss Knife for Mobile App Testing.

RobusTest is designed to be a one stop platform for everyone involved in creating a mobile application - right from business stakeholders who need to see what their application looks like, to developers who need to run some quick checks to testers who need to test the app extensively using manual and automated methods. Some important features of RobusTest are

	Testing on real devices

	Performance-first approach to manual and automated testing

	Simulate real life scenarios for meaningful testing

	Automate your tests and make them data-driven without writing any code

	Run your automated tests on multiple devices in parallel

	In-depth test reports including both funtional and performance test results

	Run your own automated tests on the devices connected to the platform

For any questions on the documentation, feel free to write to us at support@robustest.com

2. Getting Started

Accessing RobusTest

Users can start using RobusTest by signing up at http://robustest.com

Enterprise users can also have an on-premise instance of RobusTest installed. For more information on our enterprise offering, do write in to us at hello@robustest.com

If you are using the public instance at http://robustest.com, you can easily create a trial account for yourself from the Sign Up page. Please note that you can sign up on the public platform only with a business email address. A trial account has 60 minutes of device usage credits. Your account is associated with your organization based on your email address domain name. Note that in case of trial accounts, there is an overall cap of 180 minutes on the organization. This cap is not applicable in case of paid accounts.

[image: _images/signup.png]

On Sign Up, you will need to confirm your account.

[image: _images/thankyou.png]
In an on-premise enterprise instance, the process of signing up may differ e.g. in case of SSO integration, you can just login using your existing credentials. You can get more details from the administrator for your enterprise installation.

3. Project

On RobusTest, all activity related to the testing of a mobile app will be part of a Project.

A Project is a logical place for all builds, test cases, test suites, test runs and test reports associated with the testing of the app. It also facilitates collaboration within the team.

Creating a project

	Once you have logged into RobusTest, you will find a ‘Create Project’ button on the landing page. To create a project, click on this button.

	On the ‘Create New Project’ page that opens up, you need to enter the following information:

	Project Name - in case of app testing, this is usually the name of the app under test (AUT). This field is mandatory

	Project Description - provide a brief description of the purpose of creating this project

	Project Type - you have the option to create one out of 4 types of projects:

	Android App Project

	iOS App Project.

	Mobile Webapp Project

	Device Only Project

You can find more information here: Types of Projects

[image: _images/createproject.png]

	Click on the ‘Create Project’ button. The project has now been created and you will find yourself on the Project Dashboard.

E.g., after creating an Android project the project dashboard looks like below image.

[image: _images/projectdashboard.png]

	Now that you have created a project, the next step is to upload the app build to be tested
* For an Android project, this will be an apk file
* For an iOS project, this will be an ipa file

To upload a build, click on the ‘Upload new build’ button (i.e., the ‘+’ icon) on the Project Dashboard

This step is not applicable to Mobile WebApp and Device Only projects

You are now all set up to begin testing

Before we do so, let’s get to understand the Project Dashboard a little more

4. Project Dashboard

The Project Dashboard provides you information about the project you have created - i.e., the app under test, the build details, project members, CI settings, etc.

[image: _images/projectdashboard3.png]
Let’s have a look at the Dashboard in detail.

The Project Dashboard constitutes of the following 5 sections:

	Builds

	Team

	Upload Build - Remote

	Settings

	Group

1. Builds

This is the section of the Dashboard on which you land by default on clicking on a project.

The Build section provides you information about:

	Build details (i.e., build name, version name, version code, package name and launch action)

	Description about the build

	Build file size

	Name of the team member who uploaded the build to the project

	Date of upload of the build to the project

You can upload multiple builds to a project. You can choose the build to be tested upon from the ‘Build’ drop down field.

In addition to providing you the details about the build, this section of the Dashboard also allows you to perform the following tasks:

	Upload New Build - Clicking on this button enables you to manually upload an app build from a chosen location to the project

	Get selected Build URL - Clicking on this button copies to the clipboard, the URL to download the currently selected build in the project. On pasting this URL on a browser tab and hitting enter, the user is able to download the currently selected build onto their computer.

	Copy the build ID - Clicking on this button copies to the clipboard, the build ID of the currently selected build in the project.

	Delete Selected Build - Clicking on this button deletes the currently selected build from the project. Only a project member with admin privileges can delete a build.

2. Team

All members who are added to the project are listed on the Team section. Apps that are part of a particular project can be accessed by everyone who is part of that project.

Project members have the ability to test, automate and view reports for any build that is part of their project.

Each team has 2 kinds of memebers - Admin and non-admin

Admin members have a few additonal privileges when compared to non-admin members. They can:-

	Delete a build from the project

	Add/remove members from the project

	Grant to/Revoke from a team member admin privileges

	Execute a CURL command to upload an app build remotely

By default, a member who creates a project has admin privileges on that project.

Note: An Admin member of a project is different from a RobusTest Admin The former’s privileges are restricted to the project the member is a part of while the latter has special privileges on the entire RobusTest platform

3. Upload Build - Remote

This section is visible only to admin members of the project.

Here, a CURL command is provided which enables the user to upload an app build to the current project remotely

The general format of this command is as follows:

curl -X PUT '<RobusTest URL>/v3/project/<PROJECT IDENTIFIER>/build?accesskey=<USER ACCESS KEY>' -H 'content-Type: multipart/form-data' -F 'build=@<BUILD NAME WITH PATH>' -F buildInfo='{"desc":"<build description>", "label":"<label>","activityClass":"<launch actvity>"}'

Let’s break down the different components of this command for better understanding:

	RobusTest URL: This refers to the URL that you use to access the RobusTest platform. It would be of the form http://’<RobusTest IP>’ or http://’<RobusTest domain>’ E.g. http://robustest.this.instance.com:8085

	Project Identifier: The ‘Project Identifier’ is how we identify the project to which we want to upload the new app build. This can be obatined as follows:

	On RobusTest, go to the Project Dashboard of the project to which the build is to be uploaded

	The URL displayed there is of the form <RobusTest IP>/#/project/<Project ID>/dashboard

	Copy the Project ID value from above URL

	E.g. if the URL says http://robustest.this.intance.com:8085/#/project/5d176ffef0238be8f3b7afa5/dashboard , then, the value 5d176ffef0238be8f3b7afa5 above, is your project ID

	User Access Key: Each user has a unique User Access Key associated with their profile on RobusTest.

By default, the user access key will be populated in the ‘Remote build upload’ command provided on the Project Dashboard. All builds will be uploaded using the RobusTest ID of the team member whose access key is being used.

Later, if you would like to upload the build using a different team member’s RobusTest ID, you need to change the value of the ‘User Access Key’ in the ‘remote build upload’ command.

Please have a look at the User Profile page for more details on how to obtain the User Access Key.

	Build Name With Path: The path to the location from where the build can be picked is specified here. The app build present in the location or path mentioned in the command is uploaded to the project that is identified by the Project Idenitifier.

	buildINFO section: This section is used to provide additional details about the build such as description, label or launch activity. It is not mandatory.

A sample remote build upload command would look as follows:

curl -X PUT 'http://robustest.this.instance.com:8085/v3/project/5d176ffef0238be8f3b7afa5/build?accesskey=aY33cDmkt7B2nAjxBl6Tp2FWv4' -H 'content-Type: multipart/form-data' -F 'build=@/username/build/new/latestbuild.apk' -F buildInfo='{"desc":"description from api"}'

You can now run the above command directly on the Command Line OR choose to invoke this build-upload API through a programming script in a language of your choice.

E.g. you can add the above line to your Jenkins shell script that creates a new build. As a result, whenever a new build gets created, it also gets uploaded to the project. Using RobusTest, you can now build a process, say, to test this new build by running a sanity or smoke test each time a new build is uploaded to the project.

4. Settings

This section provides you the following options:

a. Enable notifications - On enabling this checkbox, each member of the team is notified whenever a new build is uploaded to the project

b. Choose Bug Tracker configuration - RobusTest supports Continuous Integration with your existing CI tools through APIs.

Once you have integrated your Bug Tracker tool wih RobusTest, this configuration will be available for selection in the ‘Bug Tracker’ drop down. Once the required configuration is selected, all bugs encountered during your testing can be logged directly, from RobusTest, into the tool of your choice.

You can configure your project with the tool of your choice through the ‘Integration’ section of the RobusTest Admin Console.

Manual Testing

Now that you have created a project and selected a build to test, you may want to get right into it and perform some manual testing on your app.

To start a Manual test session:

	Click on the ‘Manual’ icon on the Project Dashboard

A device selection screen now pops up. You may search for a device on the ‘Device selection screen’ based on device name, platform version, screen size, hardware configuration (e.g. Memory and CPU), node name, node IP, etc.

	Select the device you wish to test on by clicking on the ‘Select’ button under the device

Note: RobusTest provides you a way to select multiple devices in parallel to perform your manual testing. To know more go to the page on Multi-device testing

	Once you have selected the device, click on the ‘Play’ button on the top right corner.

The device screen now comes up and you can see that your app is installed on the device.

Congratualtions! You have succesfully begun a Manual test session

Now let’s see how RobusTest helps you to test better

The Manual Test Session, consists of 2 parts:

	Device screen

	Test Configuration section

1. Device screen

The device screen is where you perform your testing. You can perform various gestures like tap, swipe, scroll and entering text with the help of mouse/trackpad and keyboard. The buttons at the bottom of the screen are available for use as Android navigation buttons.

2. Test Configuration section

The ‘Test Configuration’ section enables you to test better and easier by providing various add-on features

These features are available across 2 menus:

a. Device Configuration Menu

b. Session Configuration Menu

Once your testing is complete, you can click on ‘End Session’ button to exit the Manual test session.

1. Device Configuration Menu

This is the horizontal menu that you find in your test session page. It provides you options to perform various configurations related to the device. Let’s have a look at each of them.

1. Location Simulation

This feature allows you to test as if the device is present at a different location than where it actually is. This is done by simulating the location on the device.

Pre-requisites:

On the device:

	in Developer options:
* enable ‘Mock Locations’
* set the Nizedha app as your mock location app

	in ‘Locations’, set the ‘Location Mode’ to ‘Device only’

Once the pre-requisites have been met, you can simulate any location as follows:

	Click on the ‘Simulate Location’ button

	Type the name of the location in the ‘Search location here’ field and select from the drop down. Alternatively, you can manually pin the location of your choice on the map

	Once your location has been pinned, click on the ‘Set Location’ button

Your device will now behave as if it is situated at the location chosen by you

2. Run ADB commands on device

Sometimes, as part of your testing, you may want to run a few ADB commands on the device under testing. You can do so by clicking on the ‘Run ADB commands on device’ button.

This brings up the Command Line Interface from where you can execute adb commands directly on the device.

3. Enable/Disable Navigation menu on device

This button enables/disables the Android navigation menu bar at the botton of the device screen.

4. Device screen size configuration

These buttons enable you to increase the screen size, decrease the screen size and to reset the device screen size to its default setting. This is useful in case you want to look at the app in more detail and want to verify the rendering of various objects on the screen.

5. Device screen ratio configuration

These buttons enable you to increase or decrease the screen ratio.

This feature is helpful in scenarios, where the network bandwidth is low and the user would still like to test.

Increasing the screen ratio decreases the resolution of the device screen and enables the user to continue testing at a lower bandwidth.

Decreasing the screen ratio enables the user to test on the device screen at higher resolution.

6. Device screen rotation

You can test the device in Landscape and Portrait modes by rotating the device screen using these buttons

2. Session Configuration Menu

This is the vertical menu that you see in the Manual test session. It provides the user information that would aid in the testing process. Let’s go through each of them.

1. Session Information

Clicking on this button provides you all details regarding the manual test session in progress. This includes information about:-

	the build - App name, build version, last uploaded, etc

	the device - Device name, ADB ID, OS version, etc,

	the project - Project name, Last build uploaded, etc

2. Focused View

Clicking on this button provides you a distraction-free view of the device screen so that you can focus solely on your testing

3. Create & View Contacts

The ‘Contacts’ feature is useful in use cases where you need to make calls or send SMSs to specific contacts or phone numbers.

You can add names to the contact list and specify their contact numbers. Now you can call or send an SMS to these contacts from the device on which you are testing.

4. Create & View Notes

The ‘Notes’ feature enables you to save tidbits of information that may be of use to you at a later point in time or perhaps information which you may want to share with your project members. The notes you create are available to any project member even after the end of the test session in which the note was created.

5. Execute Deeplink

This feature enables you to test deeplinks being used in your app. Provide the deeplink and, if required, the package name. Then click on ‘Execute’. You can now see the deeplink being executed on the device

6. Copy from device clipboard

Sometimes the need arises where you may want to copy data from the device screen, say, - maybe a text in an app page or a URL opened on a browser on the device - to your own computer or laptop.

In such cases, do the following:

	Copy the text you want to retrieve onto the device’s clipboard by selecting and long pressing it

	Now click on the ‘Copy from device clipboard’ button in your Manual test session. This data is now available on the clipboard of your computer.

	Paste (Ctrl+V) the text anywhere on your computer

7. Device Screenshot

This feature enables you to take capture the device screen at any point during testing. You can use this to highlight an issue and share it with your colleagues

8. Burst Mode Screenshot

Burst Mode is an advanced mode of taking screenshots. On clicking on this button, for a period of 30 seconds, a screenshot is automatically taken everytime there is a change on the devcice screen. At the end of this period, you can individually edit and download each screenshot.

This feature proves very helpful in cases where you would like to capture an entire flow in your testing scenario.

9. Device Log

You can view the logcat report in a tabular format with options to filter by the log level. You also have the option to download the log in CSV format.

10. ANR Log

The ANR log or the ‘Application Not Responding’ report is generated in the event that your app crashes. This log gives you significant information in determining the casue of the crash and is also available for download.

11. Share Test Session

If you encounter a situation where you find a specific scenario in your app flows that you would like to cross-check with or show to your colleagues but they aren’t nearby, don’t worry, we got your back.

The ‘Share Test Session’ feature enables you to collaborate with colleagues by sharing your device screen with them.

You can share your device screen in two ways:-

	by sending them a link to your device link by clicking on the ‘Copy Share-Link to Clipboard’ button

	by scanning the QR code displayed with a mobile phone

Once your colleagues click on the link you shared or finish scanning the QR code, not only can they see you perform various actions on the device screen, they can also interact with the same device screen through their computer or mobile device.

12. Connect to ADB remotely

This feature was developed with the intention to help your dev team.

Let’s say you find an issue while testing and then reach out to a developer for support.

Now, if this developer would like to access the ADB on the same device for further investigation, she or he can do so remotely by running the command displayed on your screen.

They can now work on the device as if it is connected directly to their own computer.

This feature is also of use to developers who may want to test their code while developing on Android Studio

13. Switch to multiplexing

You can toggle between multi-device testing and testing in a single device using this button.

14. Log bug

Use this feature to directly logs bugs that you encounter while testing into your bug tracking system, without moving away from your test session.

RobusTest supports API integration with a host of third-party bug tracking software such as JIRA, Bugzilla, etc.

Once integration with the bug tracking software is enabled from the Admin Console, you can start logging bugs.

While logging the bug, you can choose the Assignee, the reporter, the type of issue, a summary of the issue and a detailed description. You also have the option to attach the device logs, the ANR log and screenshots as well.

At the time of logging of the bug, in addition to the above details, RobusTest will add more information to the ticket pertaining to the app, app version, OS version, device details, project details, etc

15. Change Wifi

Sometimes you may want your test device to connect to a different Wifi network. In such cases, you can use this feature to select the Wifi network of your choice by providing the SSID and Password.

16. Install Build

This option enables you to select and install a build of your choice from the options provided in the drop down. Only builds previously uploaded to your project will be available for selection

17. Network Shaping

Network Shaping enables you to select a specific kind of network to test your app on. E.g. 2G, 3G, 4G, etc. You are enabled to create an ATC Network profile which simulates charcteristics of the kind of network you choose. You can know more about creating ATC profiles in the Admin Console section.

1. Multi-device testing

The ability to perform manual testing on multiple devices in parallel is one of the defining features of the RobusTest platform.

We refer to this ability as Multiplexing

Advantages of Multiplexing

Multiplexing provides you an advantage in the following scenarios:

	You can perform manual testing on multiple devices of different screen sizes and running different OS versions and view all device screens simultaneously.

	It is useful in scenarios where testing involves interaction between two devices.

	E.g. 1: Making a phone call from one device to another

	E.g. 2: Sending an SMS from one device to another

	E.g. 3; Testing the chat feature in an app using two or more devices

	The ‘Replication’ feature (described below) enables you to execute the same action on multiple devices by performing the action on one device

How to start a Multiplexing session

There are two ways to begin a Manual multiplexing test session:

Method 1: Starting a multi-device test session directly

	Click on the ‘Manual’ icon on the Project Dashboard.

	Select the devices you wish to test on by clicking on the ‘Select’ button under those devices.

	Once you have selected the devices, click on the ‘Play’ button on the top right corner. The multiplexing session is now in progress.

Method 2: Switching to a multi-device test session from a single device manual test session

	Click on the ‘Manual’ icon on the Project Dashboard.

	Select one device you wish to test on by clicking on the ‘Select’ button under those devices.

	Once you have selected the device, click on the ‘Play’ button on the top right corner. The single device manual test session is now in progress.

	Click on the ‘Switch to Multiplexing’ button on the horizontal menu. You are now in a multiplexing test session and can add more devices to this session for testing.

Understanding the Multiplexing test session

Now that you have started a multiplexing session, let’s see what operations and features are available to you to aid you in your testing.

There are two menus you need to familiarize yourself with in a multiplexing test session:

	The Vertical menu along the left border of the multiplexing test session

	The Horizontal menu above each device screen

1. Vertical menu on the left of the test session

The following buttons are visible on this menu:

1. Enable Replication - Clicking on this button enables you to replicate an action that you perform on one device in the multiplexing test session on all other devices in the same test session.

This feature works in cases where all devices being used in the multiplexing test session are of comparable screen size and resolution.

It helps you to considerably reduce the time spent in testing on multiple devices.

2. Add more devices - You can add more devices to a multiplexing session by clicking on this button.

Clicking on this button brings up the device selection dialog. Click on the ‘Select’ button for the device that you wish to add to the multiplexing test session and then click on the ‘Play’ button. The new device screens will now be visible in the multiplexing test session.

3. Take Screenshot - On clicking on this button, a screenshot of all device screens in the test session is taken and downloaded to your computer.

4. End Test Session - Clicking on this button ends the multiplexing test session in its entirety and all devices that are used in the test session are freed and made available for new test sessions.

2. Horizontal menu above each device screen

This menu is visible above each device screen in the test session and is specific to that device. The following buttons are visible on this menu:

1. Switch to Manual mode - Clicking on this button, opens that specific device in a single-device manual test session. You can always go back to your multiplexing test session by clicking on the ‘Switch to Mutliplexing’ button in the manual test session.

2. Download device logcat - As the name suggests, clicking on this button downloads the logcat report for that device.

3. View device logcat - Clicking on this button displays the logcat for that device on a new browser tab.

4. End Test Session - You can remove a specific device from a multiplexing test session by clicking on ‘End Test Session’ button on the horizontal menu bar on that device.

3. Test Embedded Video

 RobusTest Automator

RobusTest Automator

Creating and running automation test cases considerably speeds up the testing process and helps reduce human error.

RobusTest enables you to create automation test cases in a quick and easy way with minimal to zero coding.

Any Automation testing plan should comprise of the following 3 processes:

	Creating an automation test case

	Running or Executing an automation test case

	Generating test run reports

In this section, let’s look at how we can create automation test cases

In order to start an automation test session:

	Click on the ‘Automation’ icon on the Project Dashboard

A device selection screen now pops up. You may search for a device on the ‘Device selection screen’ based on device name, platform version, screen size, hardware configuration (e.g. Memory and CPU), node name, node IP, etc.

	Select the device you wish to test on by clicking on the ‘Select’ button under the device

The device screen now comes up and you can see that your app is installed on the device.

Your automation test creation session is now in progress.

Creating Automation Test Cases

RobusTest not only allows you to record different kinds of user actions but also provides you with a host of features that enable you to automate a wide variety of complex user scenarios.

Let’s have a look at how RobusTest helps you create automation test cases

	Recording user actions

	Test Step Management

	Test Session - Device Management

	Test Session - Test Case Management

	Test Session - Session Management

	Creating and Managing Test Cases

You can click on the ‘End Session’ button to end the recording session.

 1. Recording user actions

1. Recording user actions

When you hover your mouse pointer over the app that you are testing, you will notice a rectangular placeholder overlaid on top of various objects on the screen. You can also find the name of the highlighted object on the header.

When a particular object is highlighted using the placeholder, it is selected and you can record various actions related to that object.

Left-clicking on a highlighted element opens up a context menu which lets you do the following:-

1. Record user actions

Depending on the element highlighted, you can select one of the following actions to be recorded:

Type - this records a ‘Type’ action on the object and is used to enter text into the selected element

RobusTest provides you a number of options for Typing text

Tap - this records a ‘Tap’ action on the object that you have selected

Double Tap. - this records a ‘Double Tap’ action on the object that you have selected

Press and Hold - this records a ‘Press and Hold’ or a ‘Long Press’ action on the object that you have selected

Zoom. - this records a ‘Zoom’ action on the object that you have selected

Pinch. - this records a ‘Pinch’ action on the object that you have selected

Swipe - this records a ‘Swipe’ action on the object that you have selected. For more details, go to the Swipe section

Swipe Till. - this records a ‘Swipe Till’ action on the object that you have selected

Precise Tap - this records a ‘Precise Tap’ action on the object that you have selected

Recording any of the above actions results in a corresponding test step being created

2. Verify element

This option allows user to create a check or an assertion on an object. If the verification condition fails, the test step fails.

You can know more on the Verification page.

3. Store element

Sometimes you may want to store values corresponding to an element’s attributes for later verification. These include attributes such as ‘text’, ‘content-desc’, ‘checkable’, ‘checked’, ‘enabled’, ‘clickable’, ‘focused’, ‘selected’, etc.

You can use the ‘Store Element’ option to do so.

a. Left-click on the element whose information you need to store and click on ‘Store Element’ on the Context Menu.

b. You can see that a ‘Store Element’ test step has been recorded

c. Expand this test step and go to the ‘Return Data’ tab. Here you can see all attribute information corresponding to the element selected. This information can be used for later verification (as explained in the point above).

4. Find concurrent element

This option enables the user to identify and select the right element on which an action is to be performed.

The elements on which an action is to be performed by the user are identified from the pagesource that is fetched for that app page.

However, sometimes, it is found that an element is overlaid by one or more other elements in the pagsource. This results in the user not being able to highlight the correct element to record a user action.

This is where the ‘Find Concurrent Element’ option comes into the picture and enables the user to idenitfy and select the right element. It does so as follows:

a. Hover the mouse pointer over the area on the device screen where the element on which you wish to perform an action is present

b. Left-click and select the ‘Find Concurrent Element’ option.

A ‘Concurrent Elements’ pop-up window now opens up. The ‘Concurrent Elements’ window lists all elements that are present on the area of the device screen on which you executed a left-click.

c. On moving the mouse pointer over each element listed on the ‘Concurrent Elements’ window, the corresponding element is highlighted on the device screen.

d. On the ‘Concurrent Elements’ window, click on the name of the element on which a user action is to be recorded and then click on the ‘Save’ button. This element is now selected and is seen highlighted on the device screen.

e. Any user action that is now recorded by left-clicking on the highlighted element is executed on the highlighted element.

5. Find parent element

This option allows the user to identify the parent element of the highlighted element.

6. Inspect element

This option allows the user to study the object and its attributes. This is useful for advanced users and for debugging.

 2. Test Step Management

2. Test Step Management

For each action you record on the app, a corresponding test step is created in the ‘test step table’ to the right of the device screen

[image: _images/teststep1.png]
As you can see, RobusTest provides a default test step name for each test step by attempting to identify the user action. You can customise the name as required (more on this later).

Let’s have a look at the different operations available to the user to perform on a test step

The icons to the right side of the test step relate to actions you can perform on that specific test step (see screenshot below)

[image: _images/teststep2.png]

	Copy step - this enables you to create a duplicate test step performing the same action as the original test step. This saves you time taken in re-recording the same test step , when you have to repeatedly perform the same action in the test case

	Update Screenshot - when you first record a test step, RobusTest captures a screenshot of the app page as it was at that moment. If you feel that this screenshot does not adequately represent the test step that was recorded (say, because the page took too long to load), then you can use the ‘Update Screenshot’ button to capture a new screenshot.

The screenshot that is thus captured is displayed as the ‘Original’ screenshot in your run report when you execute the test case as part of a test run.

	Play step - this enables you to execute the test step while in the Automation test session

	Delete step - this enables you to delete the test step that you have recorded

	Show step details - clicking on this expands the test step to reveal more options. You can know more by clicking on Test Step Details

The icons to the left side of the test step relate to actions you can perform on one or more test steps (see screenshot below)

[image: _images/teststep3.png]

	Re-arrange icon

This icon helps in two ways:

a. By pressing and holding the mouse pointer over this icon and then dragging it, the user can re-arrange the position of this specific test step within the test case.

b. By clicking on this icon, the user can pin the test step. This means that any new test step that is now recorded will be positioned after the pinned test step.

[image: _images/teststep4.png]

	Checkbox to select test step - when the checkbox on a test step is selected, two more buttons become at the top of the Test Step table - ‘Group Play’ button and the ‘Group Delete’ button

	Group Play button - when this button is clicked, all test steps in the test case, that have been selected by enabling the checkbox on the test step, are executed in the order in which they are present in the test case.

	Group Delete button - when this button is clicked, all test steps in the test case, that have been selected by enabling the checkbox on the test step, are deleted in the order in which they are present in the test case.

[image: _images/teststep5.png]

	Test step execution status - this icon indicates the status after execution of the test step.

 3. Test Session - Device Management

3. Test Session - Device Management

1. Pause/Resume Automation session

While in an automation test session, you may, at times, choose/need to access the device in Manual mode.

You may toggle between Automation and Manual test modes by clicking on the ‘Pause/Resume’ button

[image: _images/pause_resume_button_1.png]
On clicking the ‘Pause’ button, the device is switched to Manual mode and a corresponding message is displayed. You can now access the device screen directly as if you were aceessing it manually

[image: _images/pause_resume_button_2.png]
You can see that the icon for the button has now changed. On clicking on the ‘Resume’ button, the device is switched to automation mode

[image: _images/pause_resume_button_3.png]
2. Show/Hide Navigation Menu

RobusTest provides you a device navigation menu on the device screen when in Automation mode

[image: _images/navigation_menu_on_device_1.png]
On clicking the ‘Hide Navigation Menu’ button, the menu is no longer displayed on the device screen. Clicking on this button again, enables the menu.

[image: _images/navigation_menu_on_device_2.png]
On starting an automation test session, by default, the navigation menu is enabled

3. Increase/Decrease device screen size

You can manipulate the size of the device screen by using the resizing buttons on the horizontal menu, as shown in the screenshot below

[image: _images/devicescreensize.png]
4. Capture device information

Information about the device can be captured by clicking on the ‘Store device information’ button. On clicking this button, a test step is seen to be recorded

[image: _images/storedeviceinformation1.png]
Now, expand the test step and click on the ‘Return Data’ tab. All information about the device can be viewed on this tab. You can scroll down to see more information

[image: _images/storedeviceinformation2.png]
5. Change Device Orientation

You can toggle between the Landscape and Portrait modes by clicking on the ‘Change Device Orientation’ button

	To change to Landscape mode:

	
	Click on the ‘Change Device Orientation’ button

	Choose 90 degrees on the pop up window

	Click on the ‘Save’ button

[image: _images/changeorientation1.png]
[image: _images/changeorientation2.png]
<Add image of device screen in Landscape mode here>

6. Location Simulation

This feature allows you to test as if the device is present at a different location than where it actually is. This is done by simulating the location on the device.

Pre-requisites:

On the device:

	in Developer options:
* enable ‘Mock Locations’
* set the Nizedha app as your mock location app

	in ‘Locations’, set the ‘Location Mode’ to ‘Device only’

Once the pre-requisites have been met, you can simulate any location as follows:

	Click on the ‘Set Location’ button on the header

	Type the name of the location in the ‘Search location here’ field and select from the drop down. Alternatively, you can manually pin the location of your choice on the map

	Once your location has been pinned, click on the ‘Set Location’ button

Your device will now behave as if it is situated at the location chosen by you.

A corresponding ‘Set Location’ test step is seen created in the test step table.

You can change the location setting by modifying the latitude and longitude values specified in the ‘User Data’ section of the recorded test step.

 4. Test Session - Test Case Management

4. Test Session - Test Case Management

1. Call a phone number

Under Construction

2. Read OTP from phone

Under Construction

3. Send Instruction to device

At times, you may want to execute commands through the device keyboard. You can use the ‘Send Instruction to device’ button to execute actions performed on the device keyboard.

[image: _images/sendinstructiontodevice.png]
4. Hide keyboard if displayed

Clicking on the ‘Hide Keyboard’ button, minimizes the device keyboard that is open on the app

[image: _images/hidekeyboard.png]
[image: _images/hidekeyboard1.png]
[image: _images/hidekeyboard2.png]
5. Send app to background for 10 secs

The ‘Send App to background’ button, enables you to send the app into the background for a specified duration.

[image: _images/sendapptobackground1.png]
If the ‘Resume mobile app’ option is selected, the app is brought back to the forefront at the end of the duration

[image: _images/sendapptobackground2.png]
6. Reset app and clear user data

On clicking on the ‘Reset app and clear user data’ button, all data related to the app that has been cached is cleared and the app is then relaunched. The app then behaves as if it has been launched for the first time

[image: _images/resetappandcleardata.png]
7. Pause Test Execution

You can add a pause time or a wait period after a test step by clicking on the ‘Pause test execution’ button

[image: _images/pausetestexecution1.png]
You can provide a duration (in seconds) for which test execution will be paused

[image: _images/pausetestexecution2.png]
[image: _images/pausetestexecution3.png]
8. Capture device screenshot

You can record a test step to capture a screenshot of the device screen at any point during the execution of a test case. This can be done by clicking on the ‘Capture Device Screen’ button

[image: _images/capturedevicescreen1.png]
When this test step is executed in a test run, the screenshot captured is available in the functional reports

9. Configure Device Network

RobusTest provides you an option to choose a network configuration on your device as part of your test case.

To do so, click on the ‘Configure Device Network’ button

[image: _images/configuredevicenetwork1.png]
On Clicking on this button, a pop-up window opens from which you may select one of the following options:

	No Connection - This disables both Wifi and Mobile Data networks on the device

	Airplane Mode - This enables Airplane mode on the device

	Wifi Only - This enables Wifi network on the device

	Data Only - This enables the Mobile Data network on the device

	All Networks On - This enables both Wifi and Mobile Data networks on the device

[image: _images/configuredevicenetwork2.png]
Once an option is selected, a test step is created to enable/disable the selected option

10. Execute ADB command

11. Verification

Check out the Using the ‘Verification’ button option page to understand this functionality

12. Execute REST API

RobusTest enables you to record test steps to make REST API calls. You can then check the response of these calls for later verification.

	On clicking on the ‘Execute REST API’ button, a window pops up

[image: _images/executerestapi.png]

	On the pop-up window, there are 3 secions available:

	Basic
* Provide the REST API and the Request Type (i.e., GET, POST, DELETE, etc) here
* If required provide a timeout for the API call

	Authorization
* You can specify the type of Authorization to be used for the API and provide appropriate credential values as required. E.g. For Basic Authorization you need to provide the username and password.

	Header
* Specify in this section any additional parameters that need to be passed as part of the REST API call

	Provide details to invoke the REST API and click on the ‘SAVE’ button.

	A test step corresponding to the invoking of the API is now seen created.

	The response of the API call can be seen in the ‘Return Data’ section of the test step. These values can be used for verification.

13. Import Function

User can import functions created by clicking on the ‘Import Function’ button

[image: _images/importfunction1.png]
On the window that pops up, a list of functions is displayed. Click on the required function and click on the ‘Save’ button.

[image: _images/importfunction2.png]
The function is now seen in a test step as part of the test case

[image: _images/importfunction3.png]
14. Execute Deeplink

You can use this functionality to rcord a test step to execute a deeplink in your app. For this, provide the deeplink URL (and a Package name, if required) and click on the ‘Save’ button.

15. Get Current Context

16. Set Current Context

17. Execute Database calls

Clicking on this button enables you to execute Database queries.

[image: _images/executedbquery.png]

	On the ‘Execute DB Query’ window that opens, enter the following information:

	DB Provider - Presently we support Oracle

	Connection String - This should be in the format: username/password@db_host:port/db_name

	DB Query - provide the database query to be executed

	Result Row

	Click on the ‘Save’ button to execute the query

	A corresponding test step is created in the test step table. The output of the query is viisble in the ‘Return Data’ section of the test step.

18. Manage Android Permission Alerts

On Android version 6.0 and later, Android provides the user the option to ‘Allow’ or ‘Deny’ different kinds of permissions to an app on the user’s mobile device. These include permissions to access ‘Contacts’, make phone calls, send SMS, access location, etc.

On RobusTest, after you have started an automation test session for an app, if Android Permission Alerts pop-up, then, the default way of handling these alerts is to ‘Allow’ all such requests.

No test steps are created for the handling of these alerts.

However, RobusTest provides you a highly customisable way to handle these permissions too.

	Click on the ‘Manage Android Permission Alerts’ button on the header

[image: _images/managepermissionalerts.png]

	On the pop window that opens, you have the following options:

	Auto - Allow All Alerts: This is the default option on RobusTest. If this option is selected, then the ‘Allow’ button is clicked on for all Android Permission Alerts that pop up.

These alerts are handled automatically. No test step is created for the same.

	Auto - Deny All Alerts: If this option is selected, then the ‘Deny’ button is clicked on for all Android Permission Alerts that pop up.

These alerts are handled automatically. No test step is created for the same.

	Handle in test case: If this option is selected, then the user is provided the flexibility to determine how each permission alert is to be handled.

For each Android Permission Alert that pops up, you can choose to click either on the ‘Allow’ button or on the ‘Deny’ button.

A corresponding test step is created for the same. This will be a part of the test case.

 5. Test Session - Session Management

5. Test Session - Session Management

The vertical menu to the left of the test step table provides you various options regarding management of the test session

1. Show Recorded Steps

Tapping on this button displays the test step table. You can use this option to get back to recording your automation test steps, in case you had earlier moved away from it while using any of the options to be described below

2. Session Information

Clicking on this button provides you all details regarding the automation test session in progress. This includes information about:-

	the build - App name, build version, last uploaded, etc

	the device - Device name, ADB ID, OS version, etc,

	the project - Project name, Last build uploaded, etc

3. Device Log

You can view the logcat report in a tabular format with options to filter by the log level. You also have the option to download the log in CSV format.

4. Run ADB command on device

Sometimes, as part of your testing, you may want to run a few ADB commands on the device under testing. You can do so by clicking on the ‘Run ADB commands on device’ button.

This brings up the Command Line Interfce from where you can execute adb commands directly on the device.

5. Copy session information

Clicking on this button captures all relevant information about the session in progress onto the clipboard. This information includes information about when the test session began, details of the app build, details of the device being used, etc.

If you face an issue while in an automation test session, you can capture the session details using this option and then paste this info in a support ticket that you log.

6. Turn ON image-based element verification

Clicking on this enables image-based verification. You can read more about this in the section on Image-based Verification

 6. Creating and Managing Test Cases

6. Creating and Managing Test Cases

On the top right corner of your Automation session, you will see a group of buttons that help you manage your test cases

[image: _images/teststep3.png]
Let’s go through each of them

	Import test case - You can import an existing test case into an automation test session by clicking on this button.

	On clicking on the ‘Import test case button’, a window pops up with a list of all test cases being displayed.

	Click on the test case you want to import and then click on the ‘Save’ button

	The test case is now seen loaded into the test session. You can now execute test steps in the test case

	Remove imported test case - Let’s say you imported a test case, worked on it and updated it. Now you would like to create a new test case afresh. How do you clear the test step table?

You can do so by clicking on the ‘Remove imported test case’ button. This removes the test case from the test session and clears the test step table. You can now go ahead and start recording a new test case.

This button will be visible only after an existing test case has been imported or a new test case is created & saved.

	Update test case - Sometimes you may want to update an existing test case. In such cases, you first import the test case into a test session and then proceed to make the necessary changes.

Once your changes are complete, click on the ‘Update test case’ button. An ‘Update test case’ window pops up.

You can choose to modify the name or description of the test case on this window.

You also have the option to add tags to mark the test case. E.g. Smoke, Regression, Login, Payments, etc.

	To create a tag:

	
	Enter a tag name on the ‘Test case tag’ field

	Hit ‘Enter’. The tag is now created

Now click on the ‘Update’ button to save the changes made to the test case.

This button will be visible only after an existing test case has been imported or a new test case is created & saved.

	Save new test case - You can save a newly created automation test case clicking on this button.

If you have imported an existing test case, then, on clicking on the ‘Save new test case’ button, you can save this test case with a new name and create a new test case. The originally imported test case remains the same as it were.

 5. Executing Test Runs

5. Executing Test Runs

Now that you have created your automation test cases, the next step is to execute or run them.

RobusTest enables you to run your automation test cases by first grouping them logically using test suites and then creating and executing a test run.

1. Understanding Test Suites

2. Creating and Executing a Test Run

 Understanding Test Suites

Understanding Test Suites

A Test Suite is a collection of test cases that you would like to execute. When a test suite is submitted for a run, all test cases present within the test suite are executed.

A test suite can also be a logical grouping of test cases.

E.g. You can create test suites consisting of test cases that pertain to a Smoke Test or a Regression Test or one that groups together test cases specific to a module, say, payment, customer acquisition, order creation, etc.

a. Creating a test suite

	Click on the Test Suites icon on theProject Dashboard. You are now on the ‘Test Suite’ page.

	Click on the ‘Create Test Suite’ button (i..e., the ‘+’ icon) on the top right corner. The ‘Create Test Suite’ page opens up.

	On the ‘Create Test Suite’ page, enter a name and description for the test suite and hit the Enter key. You now see that the ‘Add Test Cases’ button is enabled. (Note: Entering the test suite description is not mandatory)

	Click on the ‘Add Test Cases’ button.
* You are now on the ‘Modify Test Suite’ page.
* On this page you can see a list of all automation test cases that you have created.
* You can search for a test case using the ‘Search’ text box provided, if required.
* Once you have identified the test case or test cases you would like to execute, add them to the test suite by clicking on the green coloured ‘plus’ icon to the left of the test case name. On being selected the ‘plus’ icon changes into a red coloured ‘minus’ icon.
* You can removea test case that has already been added by cicking on the red coloured ‘minus’ icon.
* Test cases are executed in the order in which they are present in the test suite. You can change the order by dragging and dropping the test case entries in the test suite.
* You can view the list of test cases you have selected by clicking on ‘Show selected test cases’. Only the selected test cases are now displayed. This is how your final test suite would look like.
* You can view the complete list of test cases at any time by clicking on the ‘Show all test cases’ button.

	Now that you have selected the required test cases, save your changes by clicking on the ‘Save Test Suite Details’ button at the top right.

You have now created a Test Suite!

b. Modifying Test Suites

All test suites that have been created are visible on the ‘Test Suites’ page.

For each test suite, the following information is visible:
* test suite name
* test suite description
* name of the user who created the test suite
* name of the user who last updated the test suite and the date and time of updation

To the right side of each test suite entry there are a set of ‘action’ buttons provided.

Let’s have a look at each of these buttons:

Run Test Suite: This option is denoted by the ‘Play’ button icon. Clicking enables the user to execute a test run. We shall cover this functionality in the “Creating and Executing a Test Run” section

Modify Test Suite: You can add or remove test cases or rearrange their order in the test suite by cicking on this button

Clone Test Suite: This option enables you to create a copy of the test suite. You can then rename and modify the test suite as required.

Delete Test Suite: You can delete a test suite by ckicking on this button and providing confirmation.

 Creating and Executing a Test Run

Creating and Executing a Test Run

Now that we know how to create and modify a test suite, let us understand how to go about executing a test suite in a test run.

A test run constitutes of a combination of the following 5 components:-

	Test Suite

	Run Settings

	App build

	Devices

	Data sets

	Run Mode

a. Test Suite

This is the primary componenet. It determines the group of automation test cases that will be executed in a test run. Creation of a test run begins by selecting the test suite to be run.

On the Test Suites page, click on the ‘Run Test Suite’ button (i.e., the ‘Play button’ icon) for the test suite that you wish to execute. You are now on the ‘Create Test Run’ page.

b. Run Settings

Run Settings determine how your automation test run session is going to behave.

From the ‘Run Settings’ drop down, select the setting that you would like to use. If no custom Run Setting is used, then the ‘System Default’ run setting will be used.

Details of a chosen Run Setting can be viewed by clicking on the ‘information’ icon to the right side of the ‘Run Settings’ drop down

To know more about Run Settings, go through the Run Settings page.

c. App Build

The ‘Select Build’ drop down displays a list of all the app builds uploaded to the project in which you created your automation test cases.

From this drop down, choose the right build version of the app on which you would like to execute your test cases.

d. Devices

One of the highlights of the RobusTest platform is its ability to execute a set of test cases on multiple devices in parallel.

On clicking on the ‘Select Devices’ drop down, you are provided with a list of devices on which you can run the test suite.

You can select a device by clicking on it in the dropdown. You can select multiple devices by clicking on each of those devices in the drop down.

Selected devices are visible in the ‘Select Devices’ field. Additionally, in the drop down, these selected devices are displayed in a blue coloured font.

Once a device is selected an entry is displayed on the ‘Create Test Run’ page corresponding to the selected device. This entry provides you information about the device name, the OS version running on the device, the device identifier and the dataset that is to be used for that specific device for the duration of the run.

To unselect a selected device, perform any one of the following actions:

	click on the same device in the drop down for a second time; or

	delete the entry corresponding to this device in the ‘Select Devices’ field using the keyboard; or;

	on the list of device rows displayed below the ‘Select Devices’ drop down, click oin the ‘Remove Selected Devices’ button for the entry corresponding to the device to be removed from the run.

e. Data sets

Data sets are used to execute test cases on data values that are different from that used originally when these test cases were first created.

As mentioned above, for each device selected for a run, an entry is created and displayed below the ‘Select Devices’ dropdown.

On this entry is displayed the data set that is to be used while executing the test run on this device.

The data set drop down displays a list of all data sets that were created in the project in which the autoamtion test cases were created. You can choose the data set of your choice from this dropdown.

If you do not specifically select a data set, then, the ‘Original’ data set, that was created by the system, is selected by default and the same will be used during the course of execution of the test run.

Details of the data set chosen can be seen by clicking on the ‘View Data Set’ button on the same row.

To know more about data sets, read the ‘Using Datasets’ section of the Parameterisation of Data page.

f. Run Mode

Test runs can be executed in one of two modes:

1. Parallel

2. Distributed

1. Parallel Run Mode

	In this mode, all test cases in the test suite are executed on each device that has been selected for the run.

	This mode is helpful in improving device coverage for your tests.

2. Distributed Run Mode

	In this mode, the test cases in the test suite are distributed among the devices that have been selected for the run and then executed.

	Initially each device is given a different test case for execution.

	When a test case has been executed to completion, the device is free. This device is then provided another test case from the test suite for execution.

	This mode is useful in increasing the speed of execution of your tests, resulting in fater turnaorund.

 6. Run Settings

6. Run Settings

Whenever you start a new test session - whether Manual or Automation - there are certain default configuration values that are being used to determine the way your test session behaves.

‘Run Settings’ enable users to customise these default configuration values

You can create a new Run Setting by clicking on the ‘Run Settings’ icon on the Project Dashboard

RobusTest allows you to create 4 types of Run Settings. To know more, click on each type of run setting below

1. Manual Run Setting

2. RobusTest Automator Run Setting

3. RobusTest Runner Run Settings

4. Espresso Run Settings

Configuring Run Settings

Now that you have created a run setting, let’s see how you can configure your test sessions to use a customised run setting

a. Manual Test session

	Click on the ‘Manual’ icon on the Project Dashboard. The device selection screen now comes up.

	While on the device selection dialog, click on the ‘Configure Session’ icon on the top right corner.

	On the pop window that opens up, you will find a drop down called ‘Run Settings’. You can select the Manual Run Setting that you would like to use by clicking on it in this drop down.

	You can view the various key-value pairs in a selected run setting by clicking on the information icon to the right of the dropdown.

b. Automation Test session

	Click on the ‘Automation’ icon on the Project Dashboard. The device selection screen now comes up

	While on the device selection dialog, click on the ‘Configure Session’ icon on the top right corner.

	On the pop window that opens up, you will find a drop down called ‘Run Settings’. You can select the Automation Run Setting that you would like to use by clicking on it in this drop down.

	You can view the various key-value pairs in a selected run setting by clicking on the information icon to the right of the dropdown.

c. Automation Test Run

	Click on the ‘Test Suite’ icon on the Project Dashboard.

	Click on the ‘Play’ icon corresponding to the test suite you would like to execute

	On the page that opens up, select the automation run setting of your choice from the ‘Run Settings’ drop down

	You can view the various key-value pairs in a selected run setting by clicking on the information icon to the right of the dropdown.

 7. Live View

7. Live View

On the header, in the RobusTest application, you will find a link for Live View.

This page displays a list of all active manual, recording and automation run sessions belonging to the user who has logged in. Even Appium test runs made using RobusTest Hub can be accessed here.

Each session entry provides you information about:

	the app build being tested

	the device that the app is running on

	the ADB ID of the device being used

	the type of test session - i.e., Manual, automation or test run

	the user who has started the test

	the date and time of commencement of the test session

[image: _images/liveviewsessions.png]

In addition to the above info, you will also find the following buttons:-

	Live Screen button

	You can view the live screen of a device currently being used by the user by cicking on this button (i.e., the monitor icon).

	A new window will open with the screen of the device. In case of a test run, one can also see the test steps on the live screen.

	To be able to control the device screen during a test run session, append the following to the live screen URL: ?deviceControl=true

[image: _images/liveview1.png]

	Resume Session

	This button is denoted by a green coloured ‘Play’ button icon on the live sesssion entry.

	It comes in handy when you have accidentally closed the browser tab on which your Manual or Automation test session is running. Now, on clicking this button, you can resume your Manual or Automation test session.

	Release Device

	You can end an active manual test or test recording session from this page by clicking on the this button.

	This frees up the device for a new test session.

View multiple device screens in parallel

On the Live View Sessions page, you also have the option to view multiple device screens at the same time on your monitor.

For this:-

1. enable the check box at the left side of each live view session entry, whose device screens you would like to view. At least two live session entries should be selected

2. Click on the ‘Start Multiplexing’ button

3. The user can now view the selected devices in Multi-device mode

 8. Performance Testing

8. Performance Testing

Your customers are using a variety of devices with varying hardware configuration, a range of Android versions (yes Android fragmentation is for real. Click here http://developer.android.com/about/dashboards/index.html for the official numbers from Android and check here for an even more in-depth analysis of what things look like http://opensignal.com/reports/2015/08/android-fragmentation/). We missed mentioning that many (in fact, most) manufacturers create their own flavor using stock Android.

In such a situation, it is important that you ensure that your app runs (without problems) on the devices that your customers are using. One of the most important aspects of mobile app quality is the performance of the app and at RobusTest we adopt a performance-first approach to mobile app testing. What this means for you is that whether you are in a manual test session or are running your automation tests, performance metrics of the app is just a click away.

Manual Testing

[image: _images/performance_image.png]

When you are running your manual tests for exploratory testing or executing your tests on the device, you have the option of monitoring the memory, CPU and network usage for your app. You can monitor both real time as well as cumulative network usage.

Memory Usage

You can get all the important memory usage parameters from the performance stats section. You can view the following link to investigate each memory usage metric http://developer.android.com/tools/debugging/debugging-memory.html

CPU Usage

In the CPU Usage section you can track the total CPU usage for your app. Do not panic when it goes over 100% - that happens in case of multi-core processors. On second thoughts, an over 100% usage can be a matter for concern especially if there are other processes/applications fighting for CPU time.

Network usage

Monitor the amount of data your application is exchanging - consuming and uploading - in real-time as well for a particular test session.

 9. Automation Reports

9. Automation Reports

Once your test run completes its run, you can view the detailed execution report in the Reports section.

Reports are categorized by devices and test cases.

Device based categorization

Test Case based categorization
Each test run generates three different reports

	Slideshow: of all the different screens encountered when the test was run

	Analytics: of all important device, platform and device metrics like memory, CPU, Activities, GC Analysis.

	Functional Report: of the test run which includes details of each step that was run include pass/fail status and screenshots for each step.

 Debugging Test Case Failures

Debugging Test Case Failures

 Advanced Automation Concepts

Advanced Automation Concepts

Let’s have a look at a few advanced concepts being used in automating test scripts:

	Verification

	Functions

	Parameterisation of Data

 1. Verification

1. Verification

RobusTest provides you a means to compare attribute values of an element with:-

	a custom value ; Or;

	that of the attribute value of another element

We refer to this process as a verification

A verification is done by comparing a ‘Source’ attribute value with a ‘Target’ attribute value.

When a verification is recorded, a corresponding test step is created.

Details of the verification can be seen in the ‘User Data’ section of the verification test step that is recorded.

[image: _images/verifyelement11.png]
On RobusTest, a verification can be done in two ways:-

	Using the ‘Verify Element’ option

	Using the ‘Verification’ button option

The ‘Verification’ feature on RobusTest provides you a powerful way to perform a many more operations such as:-

	Verify that an element exists

	Invert Verification

	Image-based Verification

 1.1. Using the ‘Verify Element’ option

1.1. Using the ‘Verify Element’ option

In an Automation test session, as you move the mouse pointer over the device screen, you will see different rectangular boxes being displayed.

Each box highlights an element on the current app screen/page.

[image: _images/verifyelement1.png]
Hover the pointer over an element (so that a rectangle is displayed) and perform a left-click. You will see a context menu open up.

On the context menu, click on the option ‘Verify Element’

[image: _images/verifyelement2.png]
You now see a ‘Create Verification’ window pop up

[image: _images/verifyelement3.png]
On this window you can see the following:-

	Source

	Target

	‘Add Verification Step’ button

	‘Invert Verification Result’ checkbox

We shall understand each of the above terms as we proceed further

The first step for any verification is to identify the ‘Source’ element

When executing a ‘Verify Element’ action, the ‘Source’ is always going to be the element on which the left-click was performed.
Hence, the ‘Source’ field on the top left corner of the window is disabled by default.

If the Source element has a value present for its ‘text’ attribute, then, this value will be displayed under ‘Source’. In the example above, the element has the value ‘Login’ for its ‘text’ attribute.

The second step is to identify a ‘Target’ element

This can be done in two ways:-

	By directly using the ‘Add Verification Step’ button

	By using the ‘Target’ drop down

1. Directly using the ‘Add Verification Step’ button

The ‘Add Verification Step’ option is used when you want to compare the value of the Source attribute against:

	its default value populated; or;

	a custom value

Click on the ‘Add Verification Step’ button. A verificaiton row is seen added

[image: _images/verifyelement4.png]
On the verification row, you need to select 3 values:-

	the Source attribute

	the condition to be evaluated (or comparison criterion)

	the Target attribute

a. the Source attribute

On clicking on the ‘Source’ attribute drop down, a list of all the attributes associated with the source element, along with their values, are displayed.

Select the attribute whose value you want to compare by clicking on it.

Let us click on the ‘text’ attribute in this example

[image: _images/verifyelement5.png]

b. the condition to be evaluated

Click on the ‘Conditions’ drop down. A list of various conditions can be seen.

The conditions ‘is exactly’, ‘contains’ and ‘is contained in’ are used for string comparisons

The conditions ‘=’, ‘<’, ‘>’, ‘<=’ and ‘>=’ are used for numeric comparisons

Select the condition to be checked by clicking on it.

Let us click on the condition ‘is exactly’ in this example

[image: _images/verifyelement6.png]

c. the Target attribute

By default, the Target element in this case is the same as the Source element

On clicking on the ‘Target’ attribute drop down, a list of all the values associated with the attributes of the element are displayed.

Also note that the text in this drop down is editable.

You now have two options here:-

	Click on a value on the drop down. This value will be compared against the Source attribute value

OR

	Manually enter a value in the target attribute field to be compared against

1. Click on a value on the drop down.

[image: _images/verifyelement7.png]
This option can be used to ensure that the expected/default value is being displayed or populated for that attribute

[image: _images/verifyelement8.png]
The above verification can be read as follows:

Is the value in the text attribute of the Source element exactly the same as the value present in the Target attribute field ?

E.g. Is the text on the Login button exactly the same as ‘Login’

2. Manually enter a value in the target attribute field

This option can be used to enter custom values in the target attribute field manually

[image: _images/verifyelement9.png]

2. By using the ‘Target’ drop down

This option may be used when you want to compare the value of the Source attribute with that of a value stored in a previous test step

The previous test step, in this case, should always be a ‘Store Element’ test step. Hence you need to perform a ‘Store Element’ action on that element.

The details of the attribute values available for comparison may be viewed in the ‘Return Data’ section of the ‘Store Element’ test step that is recorded

The Target element may be selected from the list of test steps displayed in the Target drop down.

[image: _images/verifyelement13.png]
On clicking on the ‘Add Verification Step’ button. A verification row is seen

Select the Source attribute, the comparison criterion and Target attribute from their resppective drop downs.

[image: _images/verifyelement14.png]
We now have the following comparison recorded:

[image: _images/verifyelement15.png]
The above verification can be read as follows:

Is the value in the text attribute of the Source element exactly the same as the value present in the text attribute of the Target element ?

E.g. Is the item name on the product page exactly the same as the item name on the search list

Note: The Target element will always be a ‘Store’ test step.

 1.2. Using the ‘Verification’ button option

1.2. Using the ‘Verification’ button option

The second way in which a verification step can be recorded is by clicking on the ‘Verification’ button on the top horizontal menu

This method is used when the attribute values of two different test steps are to be compared with one another.

[image: _images/verifyelement10.png]
On clicking on this button, the ‘Create Verification’ pop up window comes up

[image: _images/verifyelement12.png]
In this case, both the Source and Target elements to be used for comparison have to be selected from their respective dropdowns

A point to be kept in mind is that in order to do a comparison, it is imperative that the test steps selected in the two drop downs are both ‘Store’ test steps

Hence, a ‘Store Element’ action should be performed on both, the Source and Target elements that are to be compared

The details of the attribute values available for comparison may be viewed in the ‘Return Data’ section of the two ‘Store Element’ test steps that are recorded

Let us look at an example to understand this method of verification

E.g. Let us say, we are on an app page where a list of items are being displayed. We need to verify that the name of the first item on the list is displayed correctly if we go to the item’s product page by clicking on it

[image: _images/verifyelement16.png]
Perform a ‘Store Element’ action on the item name. A store test step is seen recorded.
Now click on the item name to go to the product page

[image: _images/verifyelement17.png]
On the Product page, perform a ‘Store Element’ action on the item name

[image: _images/verifyelement18.png]
Now, click on the ‘Verification’ button on the horizontal menu bar at the top. A ‘Create Verification’ window opens up

On the ‘Create Verification’ window, click on the ‘Source’ drop down and select the first ‘Store’ test step, i.e., the one where details of the item name of the first item in the list are stored

[image: _images/verifyelement19.png]
On the ‘Target’ drop down. select the second ‘Store’ test step, i.e, the one where the details of the item name on the product page are stored.

[image: _images/verifyelement20.png]
Click on the ‘Add Verificaiton Step’ button. A verification row is seen created.

On the verification row, select the source and target attributes as well as the condition to be evaluated.

In this example, we will select the Source ‘text’ attribute and the Target ‘text’ attribute. We will also select the condition ‘is exactly’.

[image: _images/verifyelement21.png]
Now click on the ‘Save’ button. A verification test step is recorded.

Details of the verification condition can be seen in the ‘User Data’ section of this test step

[image: _images/verifyelement22.png]
[image: _images/verifyelement23.png]

 1.3. Verify that an element exists

1.3. Verify that an element exists

Sometimes, you may want to just verify whether a specific element is displayed on the app page or not. This does not reqiure comparision of attribute values for verification.

E.g. say, in an app where music plays, you click on a button and a music player opens. You need to verify that the music player has opened on the page.

[image: _images/Verifyelementexists1.png]
In this case, all that you need to check is whether the element containing the music player is now visible on the page.

[image: _images/Verifyelementexists2.png]
RobusTest enables you to perform this kind of a verification as follows:

	In an Automation test session, hover the mouse on the device screen over the element which has to be verified.

[image: _images/Verifyelementexists3.png]

	Left click on the element and click on ‘Verify Element’

[image: _images/Verifyelementexists4.png]

	On the “Create Verification” window that opens, click on the ‘Save’ button

[image: _images/Verifyelementexists5.png]
The verification test step that is created verifies that the element exists

 1.4. Invert Verification

1.4. Invert Verification

Another interesting feature available on RobusTest is to invert the results of a verification action.

Usually, if a condition mentioned in a verification test step is a match, the test step passes on execution.

If ‘Invert Verification’ is enabled for the same test step, the result of the comparison is inverted, i.e., the test step will fail in execution

This option can be of help in many use cases.

E.g.1: Let us say that a music player is visible on an app (see example from Verify that an element exists section)

Our goal is to ensure that the music player is closed (i.e. no longer visible on the page) after the ‘Close’ button is clicked on.

We can do this using the ‘Invert Verification’ option as follows:

	Open the music player

	Left-click on the music player element and click on ‘Verify Element’n
Note: If the ‘Save’ button is clicked at this point, the verification test step recorded checks if this specific element is availabe on the page or not

	Enable ‘Invert Verificaiton’ by clicking on the check box

	Click on the ‘Save’ button

 2. Functions

2. Functions

One of the most powerful features that the RobusTest platform provides is the use of ‘Functions’ in automating test cases.

A function, in RobusTest, is a block of test steps that perform a particular task. E.g., a group of test steps that capture customer information.

Why use functions

Functions help:-

	in reducing the time & effort spent in automating test cases through re-usability of code

	in easy maintenance and updating of test cases in case of any changes in the application flow

	with improved readability of test cases

Use functions:-

	wherever a series of steps form a logical unit, e.g. a series of test steps for selecting a rental plan, entering billing information, etc.

	whenever a group of actions are repeated across more than one scenario

Using functions will significantly reduce the amount of future time spent in incorporating changes to app flows, data, element resource ids, etc.

E.g. Say, there are a series of standalone test steps (i.e., test steps not within a function) where a 4G Plan is being selected and that these steps are repeated in a number of test cases. In future, if the specific plan being selected changes, you would have to go to each and every test case and update them.

Instead, have these steps within a function named ‘Select Rental Plan’. Now, any change in the way a rental plan is created would only require a one time change within this function script. This change is reflected in all test cases that call this function.

Let’s have a look at how we create and use functions in RobusTest

1. Creating a Function

RobusTest enables you to create functions out of existing test cases.

a. Open an automation test session

b. Record the test steps that you would like to be converted into a function

c. Save the test case

d. Go to the ‘Test Cases’ page

e. For the test case that you created, click on the ‘Create Function’ button

[image: _images/createfunction1.png]

	f. On the pop-up window that opens:

	
	provide an appropriate name for the function

	choose the type of function to be created from the ‘Category’ drop down

[image: _images/createfunction2.png]
g. Click on the ‘Save’ button

You have now created a new function

2. Using a Function

Now that you have created a function, let’s see how we can use them

1. In an Automation test session, create a new test case or open an existing test case in which you would like to use the function.

2. Click on the ‘Import Function’ button.

3. On the ‘Import Function’ window that opens, click on the function you would like to use in the test case.

4. Click on the ‘Save’ button.

5. Save/Update your test case.

The function you created earlier is now a part of the test case.

It is seen as a separate test step in the test case.

On expanding this test step, you can see a tab named ‘Function Steps’

On clicking on the above tab, you can view the following information:

	name of the test case that was converted into a function

	name of the function

	list of test steps that constitute the function

If any test step being executed within a function fails, then, the test case that calls the function also fails

Click here to know More about functions

 3. Parameterisation of Data

3. Parameterisation of Data

	3.1. Mapping to Step

	3.2. Mapping to Data Set

 3.1. Mapping to Step

3.1. Mapping to Step

 3.2. Mapping to Data Set

3.2. Mapping to Data Set

To be able to provide your test cases with non-default data you need to do the following

	Create a function

The step or set of steps that you wish to parameterize should be inside a function and your test cases should use the function. e.g. in case you are trying to paramterize the login steps, it would be a good idea to put the steps to enter username, password and submit the data inside a function. This also creates a logical entity which takes care of login process.

	Parameterize the data

	Open the function test case for editing.

	Open the User Data tab for the test step that you are trying to parameterize.

	Click on the “Enable Parameterization” button for the field that you wish to parameterize.

	Provide a userfriendly variable name that identifies that field. Make sure there are no spaces in the name.

	Do the same for all the test steps that you wish to parameterize

	Save the function test case

	Create a Data Set and note down the Data Set ID. (To know more about data sets, read Data Sets)

	Create a run specifying the data set to be used and how to use the data set`1

HTTP Method: POST

URL: http://<RobusTest URL>/v3/run/new?accesskey=<access key>

Payload:

 {
 "testsuite": "<Test Suite ID>",
 "project": "<Project ID>",
 "build": "<Build ID>",
 "devices": [
 "<comma separated device IDs>"
],
 "settings": {
 "appium": {
 "automationName": "UiAutomator2",
 "disableAndroidWatchers": "true",
 "forceEspressoRebuild": "true",
 "fullReset": "true",
 "ignoreUnimportantViews": "true",
 "noReset": "false",
 "noSign": "true"
 },
 "general": {
 "checkElementIsVisible": "yes",
 "collectLog": "yes",
 "collectPerformance": "yes",
 "elementWaitTimeOut": "30",
 "enterTextMethod": "appium",
 "handleAndroidPermissionPopup": "allowAll",
 "pagesourceTimeout": 100,
 "recordingMode": "normal",
 "retryFailedTests": 0,
 "runOnlatestbuild": "true",
 "streamPagesource": "yes"
 },
 "notification": {}
 },
 "setting": "",
 "datasetID": "<Data Set ID>",
 "datasetMode": "<valid value is strict or blank>"
}

If you set the datasetMode to strict, while running the tests, the dataset will be run only on the corresponding devices. In case the datasetMode is not set to strict, then the system randomly assigns the dataset to the devices on a first come first serve basis.

Sample

HTTP Method: POST

URL: http://devicelab.acme.com/v3/run/new?accesskey=d2342dsdad231313

Payload:

 {
 "testsuite": "5e0d18075752875f4d723e01",
 "project": "5d6f3d1f57528725c1afa13b",
 "build": "5df1e691575287692822d4d9",
 "devices": [
 "5d6f3ef4c74f741abb97e23c","5ada4c74f741abb97e23c"
],
 "settings": {
 "appium": {
 "automationName": "UiAutomator2",
 "disableAndroidWatchers": "true",
 "forceEspressoRebuild": "true",
 "fullReset": "true",
 "ignoreUnimportantViews": "true",
 "noReset": "false",
 "noSign": "true"
 },
 "general": {
 "checkElementIsVisible": "yes",
 "collectLog": "yes",
 "collectPerformance": "yes",
 "elementWaitTimeOut": "30",
 "enterTextMethod": "appium",
 "handleAndroidPermissionPopup": "allowAll",
 "pagesourceTimeout": 100,
 "recordingMode": "normal",
 "retryFailedTests": 0,
 "runOnlatestbuild": "true",
 "streamPagesource": "yes"
 },
 "notification": {}
 },
 "setting": "",
 "datasetID": "5e135c765752875a2a64d33a",
 "datasetMode": "strict"
}

 10. Scheduling your tests

10. Scheduling your tests

You can use RobusTest to schedule your automation tests.
To schedule your tests you should follow the steps below

	Create a test suite - Create a test suite by adding all the test cases that you wish to be part of the test run

	Create a test run - Run the test suite created above by selecting the devices that you wish to run it on

	Get the “Run ID” - For the run that was just created, a unique Run ID is generated. To get the Run ID, click on the Reports icon for the run. In the Reports page, copy the last part of the URL. e.g. if the Reports link is

http://mobile.robustest.com/#/project/57d0f2e4aca33b21f5724cd7/report/58498732aca33b11ca655660

the Run ID is 58498732aca33b11ca655660
4. Customize the scheduling API - Scheduling API looks like

http://<RobusTest URL>/api/1/run/<Run ID>?updateFromTestSuite=true&build=latest

e.g if you Run ID is 58498732aca33b11ca655660 and your RobusTest URL is http://192.168.1.1:8081, then your scheduling API will look like

http://192.168.1.1:8081/api/1/run/58498732aca33b11ca655660?updateFromTestSuite=true&build=latest

Every time above API is called, the test suite will be run on the devices selected on the latest build of the project.

	Schedule run API - Once you have customized the run API, you need to add it as a cron job on your test run server.

 11. RobusTest Hub

11. RobusTest Hub

RobusTest provides you an efficient and simple way to run your existing test cases on our Hub.

You can view the execution of your test cases real-time using our Live View option.

At the end of the run, detailed run reports are also generated

	Appium Hub

	Run Roku Tests

	Run XCUITest Tests

	Run Selenium Tests

	Run API tests using Karate

 Appium Hub

Appium Hub

With the refreshed version of RobusTest Hub for Appium, you get a cleaner way of running your Appium tests on mobile apps as well as mobile browsers.

	Run Appium Tests

	Organize Appium Sessions Into Test Cases

	Appium Test Data

	Appium Hub to Find Locators

	Running tests for your Unity based app on the RobusTest Hub

 Run Appium Tests

Run Appium Tests

To run your Appium tests using RobusTest, follow the steps below:

1. Appium server URL

	Use the RobusTest URL as the Appium server URL.

	This will be of the form http(s)://[RobusTest Device Lab URL]/wd/hub

2. Desired Capabilities

All RobusTest specific desired capabilities should be provided by appending ‘robustest:’ to the desired capability name e.g. robustest:accessKey. The default attributes provided by Appium should be used as it is.

app - In case you are running your tests on a mobile app, you also need to provide the app desired capability. This can be a local file or a remote file.

platformName - Depending on whether you wish to run your tests on Android or iOS, please select the appropriate platform name, provided using the platformName desired capability.

robustest:deviceID - Provide the device details using the robustest.deviceID desired capability. This is not a mandatory field. If you provide deviceID for your tests, then the system will try to allocate the specific device requested and fail if the device is not available for use

robustest:projectID - The RobusTest project under which you wish to run your tests should be provided using the robustest.projectID desired capability.

robustest:accessKey - The user is authenticated using the RobusTest Access Key, provided using the robustest.accessKey desired capability.

robustest:buildID - If you are running your tests on a build uploaded to RobusTest and want to see the build details in your report, pass the robustest:buildID desired capability. The buildID is the unique identifier for a build that is uploaded to RobusTest.

robustest:jobIdentifier - To create a job or add a test case to a job, you need to direct the system to do so. This can be done by using the desired capability mentioned here. The value that you set for the job would be such that you are able to differentiate one instance of a job from another.

robustest:testcaseName - To create a test case from an appium test session, you need to direct the system to do so. This can be done in two ways. Either by giving the desired capability as mentioned here or by making an API based request to the device lab. Details for the API are available at http://api.robustest.com/#tag/appium/paths/~1v3~1appium~1{appium_session_id}~1testcase/post

browserName - In case you are running your tests on a mobile browser, provide the browserName desired capability.

adbExecTimeout - In case you are running your tests on a mobile browser, it is highly recommended to add the adbExecTimeout desired capability and give it a high value of say 2000000. This ensures that tests do not error due to timeout.

3. Setting Timeout Values

	
	robustest:runSetting - User can create a Run Setting and provide the Run Setting ID as the value of the robustest.runSetting desired capability to configure various aspects of the Appium job. The attributes currently supported are:

	runTimeout - this value (in secs) can be used to specify the max amount of time a job can run before it is closed by the system on account of exceeding the value set for runTimeout.

	idleTimeout - this value (in secs) can be used to specify the amount of time a job can be idle before the job can be closed by the system

	testcaseTimeout - this value (in secs) can be used to specify the maximum run time of a test case. This value will be used by the system only when Advanced Integration with RobusTest Appium Hub is done.

4. Additional custom desired capabilities

	robustest:fallbackScreenshotMode - this desired capability is specific to iOS test sessions. To ensure a higher success rate of screenshtos, user can use the robustest.fallbackScreenshotMode desired capability. Valid values are i. idevicescreenshot ii. appium. If this desired capability is not used, fallback method will not be employed to take a screenshot in case the default screnenshot method does not work.

 Organize Appium Sessions Into Test Cases

Organize Appium Sessions Into Test Cases

1. Grouping multiple Appium sessions into a single job

When you run an Appium test job, the job may comprise many Appium sessions. For easier reporting and management, it is possible to group all the Appium sessions created as part of a single job.

To do so, use the same value for the robustestJobIdentifier desired capability for Appium sessions belonging to the same job.

All appium sessions with the same value for robustestJobIdentifier, will be grouped together.

2. Naming your Appium sessions

Many automation frameworks are designed in such a way that they create a new Appium session for every test case.

To be able to read such reports easily in RobusTest, user can use the robustestSessionIdentifier. This desired capability is meant to be unique for every Appium session within a job.

3. Retrieving RobusTest Test Session ID

	Once your Appium tests starts, you can access details about your Appium session using the unique RobusTest Session ID. This ID is created when user tries to start an Appium session on RobusTest.

	RobusTest Session ID can we accessed in two ways:

a. By using robustestSessionIdentifier

To retrieve the RobusTest session ID using the robustestSessionIdentifier, use the following API:

GET /v3/hub/sessionIdentifer/{robustestSessionIdentifer}

The advantage of using the robustestSessionIdentifier to retrieve the RobusTest session ID is that even if the Appium session does not get created, the RobusTest session ID will help in accessing the appium log and other details.

As mentioned earlier, the robustestSessionIdentifier will have to be passed as a desired capability.

b. By using the Appium Session ID:

To retrieve the RobusTest session ID using the Appium session ID use the following API:

GET /v3/hub/session/{Appium Session ID}

When using this method, you can get the RobusTest Session ID only when you have a valid Appium session ID.

 Appium Test Data

Appium Test Data

Retrieving Appium Test Session Data

When running your Appium tests, data is generated in the form of logs and test details. Additionally, the user may want to annotate test sessions with attributes and their values.

Data for an Appium test session can be retrieved at the end of every session or at the end of the complete job. User can choose their approach based on their need.

Test run data can be retrieved from RobusTest using two different ways:

1. By using a RobusTest Test Case (RECOMMENDED)

	To enable seamless reporting in RobusTest, it is recommended to create a test case in RobusTest for every Appium test session that is completed.

	To achieve this, the appium test creation API needs to be called after an Appium test session is complete.

	Details of the API can be found by clicking here [http://api.robustest.com/#tag/hub-appium/paths/~1v3~1appium~1testcase~1{appium_session_id}/post]

	By providing the Appium session ID, user can assign name, status, desc and message for a test case. If status is not provided in the API call, then the test case is marked as fail.

	Fetch the data right after the completion of the appium test session.

	The response to this API will provide the various details of the test case created in RobusTest, including:

1. Start time

2. Updated time

3. Duration - calculated from the difference between the value of updated time of the appium test sesion at the time of the API being called and the start time of the appium test session.

4. By using an Appium Session ID - available inside the framework object of the response.

	If the test case has run properly and has been ended properly in the test code, the Updated time is the completed time of the test session.

	Note: It is important that the above API is called only after the test session is complete to ensure that the values stored are correct

	Fetch data after the completion of the appium job

	Get the RobusTest Job ID by invoking the following API and extracting the value of the “_id” attribute:

GET /v3/job/{robustest job identifier}

	The list of all test case entries for the job can be retrieved using the following API:

GET v3/job/{RobusTest Job ID}/testcases

2. Appium Test Session

In case, user does not wish to create a test case entry in RobusTest, data can still be retrieved by the following ways:

1. Fetch data right after the completion of the appium test session

	Use any of the following APIs:

GET /v3/hub/sessionIdentifer/{robustestSessionIdentifier}

GET /v3/hub/session/{Appium Session ID}

2. Fetch data after the completion of the appium job

	Get the RobusTest Job ID by invoking the following API and extracting the value of the “_id” attribute:

	GET /v3/job/{robustest job identifier}

	Using the Job ID, get all the test sessions for the job:

	GET /v3/job/{RobusTest Job ID}/testsessions

	In the response of the API request, there will be an array of objects - each object being a test session entry. Each entry will contain all the details related to the session e.g. robustestSessionIdentifier and Duration

 Appium Hub to Find Locators

Appium Hub to Find Locators

When developing your Appium tests, you may want to connect to a device to check the page source and create your element locators.

You can easily create and connect to an Appium Hub session to inspect your app’s screens.

Follow the following steps:

1. Start the Appium app

2. Go to Appium -> New Session Window

3. Go to Custom Server Tab

4. Enter the values for:

	Remote Host - this will be the RobusTest Hub URL

	Remote Port - this will be the port for the RobusTest Hub URL

	Remote Path - this will “/wd/hub” which is the default value

5. Set the following desired capabilities:

	platformName - this will be either Android or iOS

	accessKey - this is your RobusTest Access Key

	projectID - this is your RobusTest Project identifier

	app - this is the build URL generated by RobusTest. Remember to provide the “accessKey” parameter at the end of the URL to authenticate the requestgene

	deviceID - this is the unique identifier generated by RobusTest for the device

6. Click on Start Session

 Running tests for your Unity based app on the RobusTest Hub

Running tests for your Unity based app on the RobusTest Hub

Running your Unity test cases on the RobusTest Hub

For more information about Unity and Appium, read https://altom.gitlab.io/altunity/altunitytester/pages/tester-with-appium.html#

One of the most important aspects of running your AltUnity based tests on a device lab is to ensure that the port on which AltUnity server runs on the device (default port number is 13000), is forwarded to a port on the host machine.

For this, you need to use the desired capability

robustest.forwardDevicePort

The value that you need to set for this capability is 13000 which is the default port on which the AltUnity server runs on the mobile device. Once the Appium session starts to get details of the host machine and port, get the device details using the device API

http://api.robustest.com/#tag/device/paths/~1v3~1device~1{deviceID}/get

For more information regarding the advanced usage of AltUnity refer to the following link

https://altom.gitlab.io/altunity/altunitytester/pages/advanced-usage.html#

 Run Espresso Tests

Run Espresso Tests

Introduction to Espresso

Espresso is a testing framework for Android that makes it easy to write reliable UI tests for an app. More information at https://developer.android.com/training/testing/espresso/

How do Espresso jobs run in RobusTest

To run an Espresso job on RobusTest, an API based request should be made to RobusTest. In this request, user can specify the priority of the job (a higher number means higher priority), minimum number of devices required to run the job.

Once espresso job is submitted, the job enters the Pending state.

The RobusTest system checks for jobs in pending state every 100 seconds and picks up a job based on its priority and the number of devices required. If available device count is less than min devices required by job then job will not run in current cycle.

	Once a job is picked up to run, it is added in the queue.

	Once in the queue, the number of devices required are blocked.

	
	Each device that is reserved for the job is put through a dry run. In dry run both APKs - the app binary and test binary - are installed on the device, tests are extracted and executed through a quick run to check if the device will be able to run these tests.

	
	If the dry run fails on a device, that device is removed from the job.

	The job will run even if one device of all the reserved devices passed the dry run.

	If all the devices fail to execute the dry run, then the job will be marked as Failed and will be retried in next cycle. The number of such re-attempts can be configured in the job API request by changing the value of field maxAttempts. Default value of maxAttempts is 5.

	Once the dry run is successful even on one of the reserved devices, the associated PR will be blocked as pending with the context set as robustest/espresso and description as Espresso tests are running on RobusTest for job.

	Once the dry run is completed, the job moves to the Running state, where the job is now ready to give test cases to devices which have completed their dry runs successfully.

	Once the job starts running, the devices start executing tests. Once a test case completes execution on a device, the device requests for the next test case.

During the course of test case execution, one or more of the following may happen:

	If a test case executes successfully, the device requests for the next test case.

	When a device requests for a test and if there are tests remaining, one test case is assigned to the device. If there are no more tests to assign, the device is freed.

	If a test case fails, then it is marked as failed and added back to the pool of tests to be retried. The number of such of retries is configurable. When a failed test case is retried, it may run on the same device or on a different device.

	If a test case crashes during execution, then it is not retried.

	If no response is received from a job for 800 seconds, the job is restarted i.e. the job is suspended, all associated devices are freed and the job is resumed. When the job is resumed, the devices that reserved based on availability. Therefore, the set of devices may differ from the earlier set. In such a case, the tests that are already executed are excluded from the run and only the pending tests are executed.

	Once a job completes, it checks to see if there are any devices that are still associated with the job. If such a device is found, it is freed.

	Once a job completes, a comment is added to the associated GitHub commit with the following data:-

	Total number of tests

	Number of tests passed

	Number of tests failed

	Number of tests errored

	Number of tests skipped

	Number of tests crashed

	Link to Report

The PR is updated based on the following conditions:

	Even if one test case crashes, the PR will be marked as Failed

	If the number of failed test cases is equal to or higher than the threshold set in the Job API request, the PR will be marked as Failed

	If the number of failed tests cases is lower than the threshold set in the Job API request, the PR will be marked as Successful

	If the job does not complete within the maxAttempts, the PR will be marked as Failed.

 Run XCUITest Tests

Run XCUITest Tests

1. Identify the project which you shall use for running your tests. If you do not already have such a project, then you need to first create a project. Once identified, note down the Project ID for the project.

	This needs to be done only once.

	Project ID is the alphanumeric number in the URL of the project dashboard.

2. Upload the app enterprise build to your project and note down the build ID.

	This needs to be done everytime you have a new app build.

	Build ID is the name of the file that you get when you copy the URL to the build.

Refer to the Upload Build - Remote section in the following link for build upload API

http://docs.robustest.com/en/latest/projectdashboard.html

3. Upload the zipped up xctest file to your project and note down the build ID.

	This needs to be done everytime along with a new app enterprise build.

	Build ID is the name of the file that you get when you copy the URL to the build. Let’s refer to this as the Test Build ID.

Refer to the Upload Build - Remote section in the following link for build upload API

http://docs.robustest.com/en/latest/projectdashboard.html

4. Get your ACCESS KEY from your profile page in RobusTest.

Refer to the following link to get help with getting your Access Key

https://robustest-docs.readthedocs.io/en/latest/userprofile.html

5. Once you have the three pieces of information above, invoke the test using the following API details:

	URL: <RobusTest URL>/v3/xcuitest/job/new?accesskey=<ACCESS KEY>

	METHOD: POST

	PAYLOAD:

{
 "identifier":"<IDENTIFIER_NAME_GIVEN_BY_ENTERPRISE>",
 "deviceVersion":"<iOS version of the device>",
 "project":"<Project ID>",
 "build":"<Build ID>",
 "testBuild":"<Test Build ID>"
}

6 When you run your job using the API above, the response will contain the job id in form of the key _id. Use this value to get the JSON for the run report

http://<RobusTest URL>/v3/report/<job id>/xcuitest

7 To get the JSON report for an individual test case, use the id value for each test case run instance in the following URL

http://<RobusTest URL>/v3/xcuitest/testcase/<test case instance ID>

 Run Selenium Tests

Run Selenium Tests

[image: _images/buildURL.png]

	create a web project

	Hub url - point to nerve server

	Desired capabilities will look as below

{
 "browserName":"[Browser Name]",
 "accessKey" : "[User Access Key]",
 "projectID": "[Project ID]"
}

	Get browser status

HTTP Method: GET

URL: http://[DEVICE LAB URL]/grid/browsers

 12. User Profile

12. User Profile

On the top right corner of the RobusTest page, you see your RobusTest username being displayed.

On clicking on the username, a menu with the following options is displayed:

	Profile

	Help

	Support

	Logout

1. Profile

Clicking on ‘Profile’ opens the ‘User Selection Profile’ window.

On this window, the following information are displayed:

	Name: The username that was used at the time of creation of the profile is displayed here. This field is editable.

	Email: The email provided at the time of creation of the profile is displayed here. This value is not editable.

	Access Key: RobusTest provides a number of APIs that you can use to perform a wide variety of actions. For security reasons, only authorized users are permitted to execute these APIs.

For this, RobusTest provides each user an access key. This access key is a unique identifier associated with the user’s profile on RobusTest. You will need this access key to execute RobusTest APIs.

	Copy Access Key: This button copies the access key to the clipboard

	Hide/Show Access Key: This button hides or unhides the Access Key that is displayed on the profile

	Reset Access Key: Clicking on this button resets the Access Key. A new Access Key will now be generated for the user

2. Help

Clicking on ‘Help’ opens the RobusTest Product Documentation page on a new browser tab. The documentation will help you in understanding in detail how the RobusTest platform works.

3. Support

At RobusTest, we aim to provide you, the users of our platform, technical support of the highest qulaity.

When you have a query, you can reach out to us using the ‘Support’ option.

On clicking on ‘Support’, you will be re-directed to the third-party ticketing platform that we employ to handle all support requests.

[image: _images/robustestsupport.png]
On this page, you can provide an appropriate subject line and a detailed description of the issue you are facing or a requirement you would like to be met by the platform. You can also attach relevant screenshots or log files where necessary

Once a support ticket is logged, the RobusTest Support team will respond to your email based on agreed upon service guidelines.

4. Logout

You can log out of the RobusTest platform by clicking on the ‘Logout’ option

 13. Health page

13. Health page

The Health page provides you a quick look at the health of your device cloud. It provides you information on the connection/disconnection status of nodes (servers) and devices on the cloud.

You can access the Health page by clicking on the icon for the same on the main RobusTest navigation header.

On the Health page, you can see the following 2 tabs:

	Devices

	Nodes

1. Devices

The ‘Devices’ tab is open by default. It provides you a list of devices connected to the RobusTest platform as well as their connection/disconnection status.

You can search for details pertaining to a specific device using the ‘Search Devices’ text box.

On this tab you see the following 3 sub-tabs:

a. All Devices

This tab provides the connection status of all devices on the RobusTest platform. This list includes both - connected and discnnected devices.

The following infomation is provided for each device:

	Device Name: The name of the device, along with the Android version on which it is being run, is displayed. E.g. Redmi 6A - v8.1.0

	Node Name: The name of the node or server on which the device is connected is displayed here. The node name is not displayed for disconnected devices.

	Device ID: The device ID os displayed in this column

	Status: This column displays the values ‘Connected’ or ‘Disconnected’ depending on the status of the device.

	Connected Since: For devices in ‘Connected’ status, this column displays the time period for which the device has remained connected.

For devices in ‘Disconnected’ status, this column displays the time period for which the device has remained disconnected.

b. Connected

This tab acts as a filter on the ‘All Devices’ tab to display device related information only for those devices in ‘Connected’ status. The total count of connected devices is displayed next to the tab header.

c. Disconnected

This tab acts as a filter on the ‘All Devices’ tab to display device related information only for those devices in ‘Disconnected’ status. The total count of disconnected devices is displayed next to the tab header.

2. Nodes

The ‘Nodes’ tab provides you:

	a list of nodes (i.e., RobusTest servers) that constitute the RobusTest device cloud;

	the connection/disconnection status of each individual node

You can search for details pertaining to a specific node using the ‘Search Nodes’ text box.

On this tab you see the following 3 sub-tabs:

a. All Nodes

This tab provides the connection status of all nodes on the RobusTest platform. This list includes both - connected and discnnected nodes.

The following infomation is provided for each node:

	Node Name: The name of each node is displayed in this column. If no name has been provided to the node, then the IP of that node server is displayed.

	Node IP: The IP of each node or server is displayed here. The node IP is not displayed for disconnected nodes.

	Status: This column displays the values ‘Connected’ or ‘Disconnected’ depending on the status of the node.

	Connected/Disconnected Since: For nodes in ‘Connected’ status, this column displays the time period for which the node has remained connected.

For nodes in ‘Disconnected’ status, this column displays the time period for which the node has remained disconnected.

	Devices: For each node, this column displayed the count of connected and disconnected devices on that node.

b. Connected Nodes

This tab acts as a filter on the ‘All Nodes’ tab to display node related information only for those devices in ‘Connected’ status. The total count of connected nodes is displayed next to the tab header.

c. Disconnected Nodes

This tab acts as a filter on the ‘All Nodes’ tab to display node related information only for those nodes in ‘Disconnected’ status. The total count of disconnected nodes is displayed next to the tab header.

 14. Admin Console

14. Admin Console

Users who have Admin access on the RobusTest platform will find an extra icon on the platform header to access the same

[image: _images/adminconsole.png]
The Admin Console enables you:-

	to perform administrative tasks on RobusTest.

	to monitor and capture important and useful info on usage of the platform

Let’s have a look at each section of the Admin Console:

1. Activity

This section captures all user activity with respect to device groups. These include:

	creation of a device group

	modification of a device group
* addition/removal of devices in a group
* addition/removal of projects in a group

	deletion of a device group

2. Project

This section provides details of all active and inactive projects on RobusTest

On selecting a project by clicking on it, the following additional information pertaining to that project are available:

	Sessions - The last 100 test sessions that were opened on the project are visible. For each test session the following info are displayed:

	Type of test session (Manual, Automation, Run, Hub)

	Device used in the test session

	Name of user who created the test session

	Start and End time of test session

	Duration of the test session

	Reason for termination of test session (Appropriate messages are displayed for normal and abnormal termination of a test session)

	Usage - This tab provides the breakup of the total duration of each type of test session (Manual, Automation, Run & Hub) that was created in this project

	Builds - This tab displays details of each build that was added to the project

	Members - This tab provides:

	details of all memebers within a project

	privileges available for each member

	a means to add/remove members

	a means to grant/revoke admin rights

	Devices - This tab provides a list of devices that have been reserved for the project

	Settings - In this tab, you can do the following:-

	Activate or Deactivate a project - You can do so by enabling/disabling the checkbox

	Making the project a Universal Project - When a project is designated as a universal project, any new user who signs up onto the RobusTest platform gets access to the Universal project

3. User

This section provides details of all active and inactive users on RobusTest

On selecting a user by clicking on their name, the following additional information pertaining to that user are available:

	Sessions - Details of the last 100 test sessions that were started by the user are visible.

	Usage - This tab provides the breakup of the total duration spent on each type of test session by the user

	Projects - This section provides a list of all projects that the user is a part of

	Settings - This section enables you to:-

	Activate/Deactivate a user on RobusTest

	Grant/Revoke admin privileges for a user on RobusTest

4. Model

This section provides details of all active and inactive mobile device models being used on RobusTest.

A device model is a combination of the Model name (e.g. Mi A2, Samsung Galaxy S7, iPhone 7, etc.) and the Android/iOS version

On selecting a model name, the following additional information pertaining to that device model are available:

	Devices - This provides a list of all devices on RobusTest that have the same model and OS version running on them

	Settings - Under this section, you can:

	provide various information pertaining to the model such as Model name, Model brand, Model manufacturer, CPU, RAM, Screen Ratio, Screen Size, Resolution, etc.

	enable the device navigation bar/menu to be displayed in the device screen. This is menu where you would have buttons such as Back, Home, History, ec

	make available for automation all devices belonging to the mmodel by enabling the ‘Support Automation’ checkbox. If this check box is not selected, the all devices that fall under the model category will only be available for Manual testing

5. Device

This section provides details of all devices available on RobusTest. You can view a list of devices that are connected, disconected or in a busy (in-use) state.

Android and iOS devices can be visually differentiated by the logo displayed on the left of the device name. The logo also helps determine the state of the device by the colour in which the logo is displayed

	Green colour - the device is connected and available for use

	Red colour - the device is in use

	Grey colour - the device is disconnected

	Blue colour - the device is in the state of being added to RobusTest. This is seen under the following circumstances:
* when a device is being added for the first time
* when an existing device is being restarted
* when the RobusTest server to which the device is connected to is being restarted

On selecting a device by clicking on its name, the following information are visible:

	device name

	OS version running on the device

	device model

	device ID

	ADB ID

	device IMEI number

	Node server name and IP to which the device is connected

	date and time when device was last used

You can also perform the following actions using the buttons displayed on the top right:

	Free device - This button is visible only if the device is in use in a test session. Clicking on it, releases the device from its current test session and makes it available for a new test session

	Restart device - This button can be used to restart a connected device remotely

	Flash Screen - On clicking on this button, a red screen appears on the device for a few seconds and then goes away. This button can be used for identifying a specific device when there are multiple devices of the same make and model. It can help with proper labelling of devices for later identification

On selecting a device, a few more tabs become visble. These tabs provide the following additional information pertaining to that device:

	Sessions - Details of the last 100 test sessions that were started on the device are visible.

	Usage - This tab provides the breakup of the total duration of each type of test session in which the device was used

	Apps - This tab provides a list of apps that have been pre-installed on the device

	History - This tab provides the history of the connection and disconnection events of the device with the RobusTest server along with the date & time of these events as well as the reason for the same

	Contact - Any contact provided here will receive notification emails in the event of the device getting disconnected from the RobusTest server. To add a contact to a device, first create a contact in the ‘Contacts’ section of the Admin Consle. Once the contact has been added in the ‘Contacts’ section, you can add the same to the device from the current tab

	Shell - You can run adb commands on the device from here

	Settings - This section enables you to:

	provide a name for the device

	opt in or out of receiving a device disconnection email

	provide a mobile number associated with the device

	add device tags to identify the device

	identify the device groups to which the device belongs, if any

	identify the contacts associated with the device

6. Group

A group or a device group is a means by which you can restrict the usage of specific devices to specific projects.

In other words, it is a binding between one or more devices and one or more projects.

Devices that are part of a group can only be accessed by members of the projects that are part of the same group. These devices will NOT be available for members of other projects which are not part of the group.

This functionality comes in handy when there are mutiple teams accessing the same device cloud and each team has their own set of devices on the cloud. Grouping your devices helps you ensure that the devices that you need for testing your projects are always available to your team.

7. Session

This section displays details of the last 100 test sessions created by all users on RobusTest. It also displays the count of test sessions that are in progress at that moment of time.

8. Node

This section provides details of all nodes available on RobusTest.

Each node is basically a RobusTest server to which devices are connected. The RobusTest device cloud is made up of a number of interconnected nodes or servers with devices attached to one or more of them.

On selecting a node by clicking on its name, the following information are visible:

	node name

	node IP

	date & time the node was last updated

	date & time till which the node will function (this is usually in sync with the RobusTest license period)

You can also perform the following actions using the buttons displayed on the top right:

	Flash Screen - On clicking on this button, a red screen appears for a few seconds on each device conected to the server/node and then goes away. This button can be used for identifying all Android devices connected to that node.

	Create Snapshot - Clicking on this button captures details of all devices that are successfully connected to the server at that point in time. These details are now visible on the ‘Snapshot’ tab for each node. This can be used for comparison at a later point of time to identify the devices that are no longer seen connected to the server.

	Delete Node - This button is to delete a node entry under the Node section for a node that is no longer valid.

On selecting a node, a few more tabs become visble. These tabs provide the following additional information pertaining to that node:

	Devices - This provides a list and details of all devices that are connected to the RobusTest node

	History - This tab provides the history of the connection and disconnection events of the RobusTest server along with the date & time of these events as well as the reason for the same.

	Snapshot - Clicking on the ‘Create Snapshot’ button captures details of all devices that are successfully connected to the server at that point in time. This can be used for comparison at a later point of time to identify the devices that are no longer seen connected to the server

	Contact - Any contact provided here will receive notification emails in the event of the node getting disconnected (i.e, the machine is either switched off or is unreachable). To add a contact to a node, first create a contact in the ‘Contacts’ section of the Admin Consle. Once the contact has been added in the ‘Contacts’ section, you can add the same to the node from the current tab.

	Settings - This section enables you to update the following information about the node:

	Node Name

	Node Location

	Node Mac Address

	Node Machine Serial

9. Integrations

RobusTest enables you to integrate with any API enabled CI tool like JIRA, Asana, etc.

In order to integrate with such tools, you first need to create a configuration in the ‘Integrations’ section of the Admin Console.

To integrate with a tool:

	click on the ‘Create New Integration’ button

	select a tool from the drop down provided. A list of fields that enable integration with the tool are now displayed

	enter relevant values for the fields displayed and click on the ‘Create Coinfiguration’ button

E.g., let’s say you need to integrate with JIRA to log bugs encountered while testing your app. You need to do the following:
* select JIRA from the tool drop down list
* provide information such as the JIRA Server URL, JIRA username, JIRA API Token, etc.
* create the configuration setting
* now, on the Project Dashboad go to the ‘Settings’ tab and select the name of the configuration you created on the ‘Bug Tracker’ dropdown

In case you do not find the CI tool of your choice on the tool drop down list, please reach out to the RobusTest support team by emailing us at support@robustest.com and our team shall get back to you for further assistance with integration

10. Contact

This section enables you to add contact details about one or more persons. These are folks who should be informed in the event of a device or node disconection.

Once you have created contacts, you can add these to the contact list on the Device and Node sections of the Admin console so that they recieve notification emails.

11. Settings

This section enables you to configure various parameters on the RobusTest platform.

More details are avaible in the Settings page

 15. Continuous Integration

15. Continuous Integration

	Remote uploading a build

	Triggering a test run

	Monitoring a test run

	Accessing the results

 16. Integrating Bug Tracker

16. Integrating Bug Tracker

 17. Other Useful Information

17. Other Useful Information

	Adding new devices to RobusTest - Android

	Adding new devices to RobusTest - iOS

	Best Practices in Automating Tests using RobusTest

 Adding new devices to RobusTest - Android

Adding new devices to RobusTest - Android

When adding a new Andorid device to the RobusTest platform for the first time, you need to first prepare the device by performing the following set of actions on it:

	Turn on Developer Mode

	Go to the ‘About Phone’ section under Settings on your mobile device

	Now, tap on the build number field 7 times continuously to turn on ‘Developer Options’

	Stay Awake should be turned on

	USB Debugging should be turned on

	Allow mock locations

	Set USB connection behavior to act as media device

	Set location as only GPS (option may be “only device” on some devices)

	Remove any lock screen

	Security settings - Allow installation from unknown sources

	Set as true “Do not verify apps installed over USB”

	Display - Set rotation as off

	Display - Set screen timeout to Never (in case Never is not an option set it to maximum possible time available)

12. Once the above steps are completed, plug the device into the node server through a USB cable. Make sure you use a good quality
cable for better data transfer, reliable connectivity and better device charging.

	Upon connecting the device, an alert message with the title “Allow USB Debugging?” should show up on the device screen. Select the checkbox to “Always allow from this computer”. Tap on OK on the device

	Once the device is plugged in, the system will take upto 2 minutes to identify the device and add it to devices list.

	Confirm that you are able to view the device in your device list from manual and automation testing.

Additional Steps for Xiaomi or MI devices:

Instructions for Mi/Xiaomi devices

1.Security App

	Tap on the Security App

	Tap on the Permissions Icon

	Tap on the Settings icon on the top right

	Make sure Install via USB is TURNED OFF

For new device models:

	Tap on the Security App

	Tap on the Settings icon on the top right

	Tap on ‘Security Scan’

	Disable ‘Scan before installing’

	Disable ‘Auto-updates’

	Disable ‘System Updates’

2. Developer Settings

	Tap on Settings

	Tap on Additional Settings

	Tap on Developer Options

	Developer Options - TURN ON

	USB Debugging - TURN ON

	Install via USB - TURN ON

	USB Debugging (Security Settings) - TURN ON

	Verify apps over USB - Turn OFF

	Turn on MIUI Optimization - TURN OFF

3. Privacy

	Tap on Settings

	Tap on Additional Settings

	Tap on Privacy

	Unknown Sources - TURN ON

P.S. Some older MI devices may have only one of the above options (i.e., i and ii) available and/or may be named differently. Enable the relevant option

Additional Steps for RealMe devices:

	In ‘Developer Options’, enable the setting ‘Disable Permission Monitoring’

Additional Steps for Vivo devices:

	Go to ‘Settings’ -> ‘Battery’ -> ‘High Background Power Consumption’

	To the ‘Allow’ list, add io.appium.uiautomator2.server

Caveats:

	On Samsung device models, you might encounter a pop-up mwindow with the message - “Attention - The connected device is unable to access data on this device. Reconnect the USB cable and try again”.
* This is a known issue in Samsung models.
* You can try one or more of the following solutions to resolve this:

	Disconnected and reconnect the USB cable.

	Install ‘Android File Transefer’ or ‘Samsung Smart Switch’ applications on your Mac machine.

	Reboot the device and reboot the server to which your device is connected.

	Update your device Android OS software.

	Note: The above solutions do not guarantee that the window does not come up again.

	Devices running on older Andorid versions tend to be slower in response.

 Adding new devices to RobusTest - iOS

Adding new devices to RobusTest - iOS

Setting up your iOS device

	On connecting your iOS device to the RobusTest server, you will see a pop-up asking you if you would like to trust the server. Click on the ‘Trust’ button.

	On the iOS device, go to Settings -> Safari -> Advanced and enable the option named ‘Web Inspector’

	In Settings -> General -> Display & Brightness, set the ‘Auto-Lock’ option to ‘Never’.

	Ensure that the device is added to your developer certificate.

Interaction with the iOS device screen in a Manual test session sometimes get blocked on account of certain notification pop-ups that appear on the iOS device.

In order to avoid the same, you need to disable the following pop-ups:

Disable iOS Software Update Notification

	Go to Settings -> iTunes & App Store

	Click on the toggle button to disable automatic app updates

	Click on the toggle button to disable automatic downloads

Delete existing software downloads

Sometimes, an update has already been downloaded onto your iOS device. This results in the software update notification coming up even if you have disabled the Auto-Update option. To prevent such pop-ups, do the following:

	On your iOS device, go to Settings -> General

	Tap on iPhone Storage (for iPhones) or iPad Storage (for iPads), depending on the type of iOS device that you are using

	On scrolling down, you will see a list of apps and the amount of storage that each of them are using. In this list, look for the latest iOS update. It would be in the format ‘iOS 13.1.1’ or ‘iOS 14 Beta 2’, etc.

	Tap on the update.

	Now click on the “Delete Update” option and confirm. The downloaded update is now deleted.

Disable iMessage Notification

	On your iOS device, go to Settings -> Messages

	Disable iMessage by clicking on the toggle

Disable FaceTime Notification

	On your iOS device, go to Settings -> FaceTime

	Disable Facetime by clicking on the toggle

 Best Practices in Automating Tests using RobusTest

Best Practices in Automating Tests using RobusTest

1. Name test steps appropriately

	When recording a test case, RobusTest automatically generates test steps based on the actions performed. Test steps are created with the intention of being easily understandable.

	However, in many cases the test steps are not intuitive because of various reasons e.g. no content-desc provided for the element.

	It is, therefore, recommended that the test steps are reviewed and checked for easy understanding for all users. In case required, test steps can be easily renamed.

	
	This will help in :-

	
	easily understanding the test case

	faster and easier debugging of errors from the functional reports

E.g. the default step name that says ‘Tap on Relative Layout’. This makes it difficult to understand from the reports or from the test script on what the intended action is.

Instead, the test step should be renamed in a more meaningful manner such as ‘Tap on the option Recharge’.

2. Use functions wherever possible

	RobusTest enables creation of functions out of existing test cases. This is a powerful feature that helps in reducing the time & effort to automate. It also enables easy maintenance and update of test code in case of changes in the mobile application.

	Use functions wherever a series of steps form a logical unit, e.g. series of steps that capture customer data, selecting a usage plan, selecting a rental plan, etc.

	For actions that are repeated across more than one test scenarios, the use of functions helps with re-usability, thereby reducing the time spent in automation.

	Using functions will significantly reduce the amount of future time spent in incorporating changes to app flows, data, element resource ids, etc.

	At the very minimum have one function to capture the actions performed on each screen of the app.

	You can break this down further based on how a particular app screen is structured. Eg., on a single page where you are entering customer details, capturing images, selecting a number, etc, each can have a function of its own. The ‘customer details’ function can itself be broken down into functions for ‘personal details’, customer address’, etc. as applicable

E.g. Say, there are a series of standalone test steps (i.e., test steps not inside a function) where a 4G Plan is being selected and that these steps are repeated in a number of test cases. In future, if the specific plan being selected changes, you would have to go to each and every test case and update them.

Instead, have these steps within a function named ‘Select Rental Plan’. Now, any change in the way a rental plan is created would only require a one time change within this function script. This change is reflected in all test cases that call this function.

3. Perform a ‘Swipe’ action in small increments

	While automating a ‘Swipe Up’ or a ‘Swipe Down’ action, it is recommended to do so in small incremental movements, instead of one single long swipe across the screen. This would ensure that the same automation script will work across device screens of different sizes.

4. Use the element attributes to define better XPaths

	RobusTest is designed to create highly accurate and robust XPaths for elements in the mobile app. However, in certain cases the auto-generated XPaths may not work due to various reasons e.g. duplicate resource ids, non-existing resource ids.

	When tapping on a button or a link with a text, which is not subject to frequent changes, it would be a good practice to improve the XPath by adding to it element attribute values that can help in identifying the element uniquely e.g. ‘text’ or ‘content-desc’.

	The XPath, thus modified to make it further unique, makes it easier to identify elements when the resource id is not unique or non-existent.

5. Use the ‘Find Concurrent Elements’ functionality

	Often times we find multiple elements overlaying one another around the same geographical area within a screen of an app. Using the ‘Find Concurrent Elements’ option will help in this scenario to identify the correct element that the user wants to perform an action on.

	Using the ‘Find Concurrent Elements’ option will display a list of elements that occupy the area within the app where the user has performed a left-click action. Select the required element and click on ‘OK’. Now, any subsequent action performed, such as Tap, Store, Verify, etc, is done on the element selected in the previous step from the list.

6. Use meaningful names for Stored variable

	When storing a value in a variable, ensure that the variable name is something meaningful and unique.

E.g Initial Data Balance for Postpaid, Customer First Name, etc. This makes it easier to pick the right variable when doing a verification against it.

7. Mention the variable name in test step while using the ‘Store’ option

	When using the ‘Store’ option to store a value in a variable, by default, the test step gets generated with a description in the format: Store <value> for later verification.

E.g. Store “10” for later verification <- Here 10 may be the initial data balance in GB for a postpaid customer

	Mentioning the variable name in the test step makes it easier to understand the test script and the functional reports. E.g. Store initial postpaid data balance for later verification

8. Provide proper descriptions for test cases

	While saving an automation test script, ensure that a meaningful name and description is provided.

	When a test case fails, a relevant description helps the user to identify the business flow correctly without spending too much time on it.

	In the ‘Test Cases’ page, the user can search for a test case based on test case name and test case description. A meaningful description goes a long way in identifying the test case and reducing the time spent in looking for it

9. Name functions appropriately

	
	When converting a test case into a function:-

	
	give the function a name that makes its purpose very clear to all users

	name it in a way that the test case name/description can be easily associated with the function name. This helps if the user wants to make a change in the function and is looking for the corresponding test case

10. Use Reports for debugging functional and performance issues

	The Functional and Analytic reports can help a lot in debugging errors in scripts

a. Functional Reports

	The error message at the top of the functional report for a test case run tells you why the test case failed.

	The test step at which the test case failed can be seen in ‘Red’.

	Make sure you have a look at the test step and screenshot just before the above failed step. Often the real reason for failure can be observed in this step.

b. Analytic Reports

	If you observe that the app suddenly gives way to the device Home screen, have a look at the device logcat section within the Analytic report

	Go to the section named ‘Log’ under Analytic report and scroll down to the bottom. If the last few entries in this section show that the app is being closed or a ‘Kill App’ instruction is being executed, it means that the App is crashing at this point.

	If the App seems to be taking an inordinately long period of time to load a page or transition between screens, have a look at the usage of CPU, Memory, Network, etc. This would provide the developers an idea on where to focus on to improve the app performance.

	Look at the number of external calls to the Garbage Collector (GC). A huge number of external GC calls within a small time period indicates inefficient usage of memory leading to slower performance of the app.

 18. RobusTest Connect - Run local, test global

 .._robustest_connect:

18. RobusTest Connect - Run local, test global

RobusTest Connect enables you to use the RobusTest platform to test on devices that are connected locally, i.e, on your own computer.

This enables you to test on your device while at the same time track runs and generate reports on RobusTest.

Your device now behaves as a part of the RobusTest Device Lab and is accessible to any member of your project on RobusTest.

To enable RobusTest on your local device, you need to do the following:

	Download the RobusTest Connect software

	Install essential software on your local machine

	Set up RobusTest config files

	Start the RobusTest Server

1. Download the RobusTest Connect software

	Download the robustest folder from the link that is provided to you

	Within the robustest folder create the following folders and sub-folders:

	platform_data

	tools

	tools/android

	tools/idevicelocation

2. Install essential software on your local machine

A pre-requisite to running RobusTest on your machine is the installation of essential software for testing your Android and iOS devices

A list of these software is given below. Click on each of them to find instructions for installation:

	Java

	Android

	Python

	Python Virtual Environment

	Node.js and Appium

If you are using a Mac computer and would like to test on iOS devices, you need to additionally install the following software:

	Xcode

	Homebrew

	idevicelocation

3. Set up RobusTest config files

	Open the config.yaml file inside the robustest folder

	In the config.yaml file, provide:

	the RobusTest server IP (in IP:port format) or the RobusTest server URL

	the License Key

	In the StartRobusTestConnect file provide the following information:

	RobusTest URL

	This will be the RobusTest server IP or the RobusTest server URL

	Node Name

	This is a custom name you provide by which to identify your computer as a Node on RobusTest

	License Key

	Path to Android ADB (if required)

	Path to the NodeJS/bin folder (if required)

	Path to virtual environment (if required)

	Protocol to be used (http or https) (if required)

4. Start the RobusTest Server

	Configure your Android device as mentioned in the following page: http://docs.robustest.com/en/latest/addnewdeviceandroid.html#adding-new-devices-android

	Configure your iOS device as mentioned in the following page: http://docs.robustest.com/en/latest/addnewdeviceios.html#adding-new-devices-ios

	Connect your test device to your computer using a USB cable

	For Windows computers:

	Open Command Prompt on your computer and navigate to the ‘robustest’’ folder

	Run the following command: .\StartRobusTestConnect

	For Mac and Linux computers:

	Open Terminal on your computer and navigate to the ‘robustest’’ folder

	Run the following command: ./StartRobusTestConnect.sh

	The server has now started running on your laptop

	Login to RobusTest on your browser and go to the Admin Console -> Node section

	You should now be able to see your computer as one of the nodes on RobusTest

	You will also be able to see and use your local Android/iOS device on RobusTest

 Troubleshooting

Troubleshooting

[image: _images/dilbert_troubleshooting.png]
Image credit-Dilbert [http://dilbert.com/strip/2014-11-22]

There are two ways to deal with this. We either say that you will never land in inexpliciable situations with our product or we give you a list of possible places where you may be stuck and subtly shift the blame on you. We will take the latter route.

Following are some issues that you may come across when using RobusTest. In case you do not find the issue you are facing on this page, log a support ticket by clicking here [http://robustest.freshdesk.com]

I tried to click on Manual or Automation buttons but I get a message Unable to reach node server

This may happen because your computer is accessing RobusTest through a proxy server and the server is blocking WebSocket protocol

I ran my automation tests on the RobusTest Hub but I do not see anything in Live View

A build URL is generated uniquely for every build and user. So, this could be because the build URL you are using to run your tests belongs to another person (and s/he is the one seeing an entry in his/her live view)

I am unable to see the test steps in the Live View for my device

In case you are using RobusTest from behind a firewall, it is possible that the information related to test steps execution is being stopped. One check for this would be to run the following command

telnet <RobusTest Installation Address> <port#>

In case the connection is not successful, it is probable that the reason for not being able to view the test steps in Live View is the stopping of information by the firewall.

	I am unable to access RobusTest

	
Make sure your computer is connected to the network.
Check if the server is running and reachable by executing a ping command on the RobusTest server

ping <RobusTest server IP address>

If the ping command is unsuccessful and you are unable to get a response from the server, it either means that the server is
unreachable or that the server is down. Please check on this with your IT team
If the ping command is successful and you are able to reach the server, then we check if the RobusTest server is running
successfully.

Visit the RobusTest processes page and ensure that all processes are running as expected
The URL for RobusTest processes page looks as below

http://<robustest server url>:9001

Make sure all the processes are in running state.
In case the URL above is not reachable, it means the RobusTest server is not running.
Start the RobusTest application by running the following command on the system. You will need to login to the RobusTest server
using putty or similar tool.

cd /opt/code/RobusTest
screen -S FrontEnd
sudo su (enter the password when prompted)
./StartServer.sh

To find out the IP addresses of the deployment servers other such details, please contact your RobusTest administrator.

Issue: Unable to access RobusTest Server

 1. Unable to access RobusTest Server

1. Unable to access RobusTest Server

If a RobusTest server is unavailable, please contact your IT team to look into this.

The IT team can follow the following points to troubleshoot

A RobusTest server may be inaccessible due to one of the followning reasons:

1. The network/LAN connection is down

	Check if the RobusTest server is accessible on the network/LAN

	Check if the LAN cable has been plugged into the server correctly

	Check if the LAN cable is faulty

2. The server machine is down

	Check if the server machine is shutdown due to a power failure at the server room

	Check if the server machine is shutdown due to the backup power failure

	Check if there is an issue with the power strip to which the server machine is connected

	Check oif there is a hardware issue with the server due to which it is shut down

3. Remote Login to the machine is disabled

	Login to the server machine

	Click on the ‘Apple’ logo displayed on the top left corner of the desktop

	In the menu that opens, Click on ‘System Preferences’

	On the System Preferences window that opens, click on the option ‘Sharing’

	Enable the check box named ‘Remote Login’.

	On the right side of the window, under the option ‘Allow Access for’, choose the option ‘All Users’

	Enable the check box named ‘Remote Management’.

	On the right side of the window, under the option ‘Allow Access for’, choose the option ‘All Users’

 Index

Index

 API to execute ADB commands from within an Espresso test

API to execute ADB commands from within an Espresso test

API Definiton

​Method: POST

​
URL:

http://<RobusTest URL>/v3/device/shell?accesskey=<user_access_key>
​
Payload:

{
 "_id" : "device_id",
 "command" : "<ADB SHELL COMMAND>"
}

​
Since Device ID needs to be provided as part of the API payload, you can find the device id through the following Java code

Bundle testBundle = InstrumentationRegistry.getArguments();
string deviceID = testBundle.getString("deviceID");

Sample API Invocation

Method: POST
​

URL:

http://devicelab.robustest.com/v3/device/shell?accesskey=1234DFFGG24FDSD
​
Payload:

{
 "_id" : "2132SDSFDSFDSF",
 "command" : "ls /data/local/tmp/"
}

 API to execute ADB commands from within an Espresso test

API to execute ADB commands from within an Espresso test

API Definiton

​Method: POST

​
URL:

http://<RobusTest URL>/v3/device/shell?accesskey=<user_access_key>
​
Payload:

{
 "_id" : "device_id",
 "command" : "<ADB SHELL COMMAND>"
}

​
Since Device ID needs to be provided as part of the API payload, you can find the device id through the following Java code

Bundle testBundle = InstrumentationRegistry.getArguments();
string deviceID = testBundle.getString("deviceID");

Sample API Invocation

Method: POST
​

URL:

http://devicelab.robustest.com/v3/device/shell?accesskey=1234DFFGG24FDSD
​
Payload:

{
 "_id" : "2132SDSFDSFDSF",
 "command" : "ls /data/local/tmp/"
}

 Adding new devices to RobusTest - Roku

Adding new devices to RobusTest - Roku

	Follow the instructions provided on the Roku website

https://developer.roku.com/en-gb/docs/developer-program/getting-started/developer-setup.md

	Once all the steps mentioned in the Roku documentation are completed, one can add the device to the RobusTest device lab from the Admin Console

	In the admin console, go to the devices section

	Click on the + icon at the top

	In the pop-up, select to add a Roku device.

	In the appropriate text field, provide the Roku device IP address and click on Add Device

	You should now be able to see the Roku device along with the other devices

 App Monitoring

App Monitoring

Using RobusTest, you can create an App Monitor. An App Monitor continuously monitors a specific screen of your app for changes in the page elements. This is great for monitoring apps in production.

App Monitor

	An App Monitor can be seen as a special case of a RobusTest Automator Test Case

	An App Monitor test case will consist of three functions

	Setup

	Setup App State

	Monitor

Setup & Setup App State functions

The Setup function & Setup App State function work together to bring the app to the state/screen which needs to be monitored. What is the difference between the two and the need for the two you may ask.

If while running the App Monitor, the app crashes or the app needs to be brought back to the screen because of the screen being stuck, then the system will use the test steps in the Setup App State function to come back to the screen.

If while running the App Monitor, the monitoring process as a whole crashes or errors out, then the system will need to start the whole process from the start including logging into the app or similar steps which will be required for a fresh install. In such a case the Setup and Setup App State functions will both be run in that order.

Monitor function

The Monitor function contains the steps which specify which elements on the screen need to be monitored.

To create a monitor step, click on the Monitor button on the upper toolbar in the Automator session

Provide values for the various fields in the pop up dialog

	Event Name - Provide a name for the event

	Event Description - Provide a description for the event

	Event XPath - Provide the XPath for the element that you wish

	Restart Monitor Timeout

	Detect Event

Create App Monitor

Create an app monitor by creating a test case with the following steps in the same order

	Step 1: Import Setup function

	Step 2: Import Setup App State function

	Step 3: Import Monitor function

When saving this test case, select the test case type as Monitoring.

Add this test case to a test suite

Run the test suite.

To stop App Monitor, close the run from the Test Runs page

 Appium

Appium

[image: _images/buildURL.png]

Configuration

Using RobusTest Hub, you can run your own Appium tests on devices connected to the RobusTest device cloud. You need make changes at a few places in your test script to get going. More specifically these changes need to be made to the desired capabilities that are specified before starting an Appium Server. Following are the values that need to be provided/updated in the desired capabilities object

	app - You can set the app value to the build URL that is created for every build that is uploaded to RobusTest. In case you wish to execute your tests on a specific build, you just need to select that build from the Project Dashboard and copy the link to the build by clicking on the Selected Build URL button. The URL will look something like

http://192.168.1.1:8081/build/581b074e7ec1653a30d1f438/581ae4a37ec165084ea9cdc3/581b074e7ec1653a30d1f439.apk

You can also use the standard URL for the latest build by using the Latest Build URL available on the Project Dashboard. The URL will look something like

http://192.168.1.1:8081/build/581b074e7ec1653a30d1f438/581ae4a37ec165084ea9cdc3/latest.apk

	device - set this value to the name of the device that you wish to run on. The list of names of devices available for use can be obtained from the device dialog available when you click on Record button on the project page. You can also get the list of available devices using the device list API

http://192.168.1.1:3142/devices

The response of the above API looks like below

{“available”: [{“available”: “Yes”, “supportHub”: “Yes”, “gmsversion”: “5.0.2”, “name”: “SM-G530H”, “supportManual”: “Yes”, “supportAutomation”: “Yes”, “adb_id”: “404b6569”, “reservedForProject”: [], “os”: “android”}], “busy”: [], “totalOffline”: 0, “offline”: [], “total”: 1, “totalBusy”: 0, “totalAvailable”: 1}

From the response, one can find out details like availability of device for RobusTest Hub, device name, Android version, etc., This response can be used to filter out devices that can be used to run Appium tests on the Hub.

	Change the Appium URL to point to the RobusTest Hub. If you are running your tests on a local instance of Appium using devices connected to your system, the Appium URL will look like

http://localhost:4723/wd/hub

Change this value to point to the RobusTest Hub.

After the change, your RobusTest Hub URL will look like

http://192.168.1.1:3142/wd/hub

Test Execution

Once you have made the above changes, run the tests as you would normally do i.e. as you a pre-configured job or from your system.

 Capturing device screen as video

Capturing device screen as video

When running your automated tests, you may want to capture the screen of the mobile device. This helps in more accurate debugging in many cases.

RobusTest enables you to capture the mobile device screen as a video.

Currently you can capture device screen for Espresso tests run on Android devices

Configuring your Espresso test runs to capture device screen

	Note that the screen recording can only be stored on external storage providers like Google Storage and AWS. Currently, screen recording files can be pushed to two storage providers - Google and AWS.

	Ensure that your Google or AWS storage bucket is registed with RobusTest.

	Once you have created an integration in RobusTest, note the Integration ID. This integration ID will be specified in the Run Settings that you shall use for your job.

	Open an existing Run Settings for editing or create a new one.

	In the Job section, look for the testDataCollections sub-section.

	Create the first entry by entering the following values

testDataCollections.testDataPoint: stats

testDataCollections.integrationType: {Google/AWS. Do not use the curly brackets}

testDataCollections.integrationID: {Integration ID that you have noted in step 3. Do not use the curly brackets}

testDataCollections.invokeConditions:

	Create the second entry by entering the following values

testDataCollections.testDataPoint: video

testDataCollections.integrationType: {Google/AWS. Do not use the curly brackets}

testDataCollections.integrationID: {Integration ID that you have noted in step 3. Do not use the curly brackets}

testDataCollections.invokeConditions:

 Capturing Requests and Responses

Capturing Requests and Responses

One time steps

	Install mitmproxy on your laptop [you can install either using brew or you can download the binary from https://mitmproxy.org/downloads/]

	Get the robustest.py file and place it in a separate folder

Pre-requisites

	Make sure you are able to access your device lab URL from your system

	Make sure that your mobile device can access your system’s IP address

Running the proxy server to capture network data

	Run the following command

mitmdump -p 8888 -s ./robustest.py –set nerve_server={Device Lab URL including http/s}

Configuring the mobile device to send requests through the proxy

	On your mobile device, configure the WiFi connection for manual proxy and enter the following details

	Proxy server URL - the IP of your laptop

	Proxy server port - 8888

	Once configured, go to mitm.it from your phone’s browser and download mitm certificate for your device platform

	For iOS devices, go to Settings -> General -> About -> Certificate Trust Settings. Enable the option Enable Full Trust for Root Certificates for mitmproxy

Running your tests

Once you are start running your tests, the network logs captured by mitmproxy will be stored in RobusTest and are accessible in the following ways

/v3/testsession/{testsessionID}/mitmproxy

/v3/appium/{appium_session_id}/mitmproxy

/v3/result/{result_id}/mitmproxy

Deprecated API routes

/v3/mitmproxy/testsession/{testsession ID}

/v3/mitmproxy/seleniumSessionID/{appium/selenium sessionID}

/v3/mitmproxy/result/{resultID}

 Enabling Code Coverage in Job Run API

Enabling Code Coverage in Job Run API

To configure RobusTest to handle the code coverage feature when running your Espresso tests, set the codeCoverage flag to true.

When you set the codeCoverage flag to true, RobusTest ensures that with each espresso test invocation the following key value pairs are sent with the test execution command.

	coverageFile - /sdcard/coverage.ec

	emma - true

i.e. the following string is appended to the test execution command

-e coverageFile /sdcard/coverage.ec -e emma true

At the end of each test case attempt, the corresponding coverage file is made available at the test artifact API. In this case, the test coverage will be available at

[Device Lab URL]/v3/log/testResultID/codeCoverage

Of course, you will need to use authenticate yourself using your acesss key.

 Create Project

Create Project

Almost all activity that to test mobile app will be part of a project. With RobusTest the user can create a project to facilitate collaboration within the team and also to act as a logical place for all builds, test cases, test suites, test runs and test reports.

[image: _images/createproject.png]
While creating the project the user can choose the type of project which he/she wants from the drop down provided. For example if the user wants to create Android project then he/she can choose Android app, similarly if the user wants to create iOS project or Mobile Webapp project or Device only proejct then he/she can choose accrodingly.

After creating Android project the project dashboard looks like below image.

[image: _images/projectdashboard.png]

After creating the project the user can proceed with the following actions like uploading the builds, adding team members to the project and adding jira settings.

The user can add more builds to the project and also has to provide a build description to uniquely identify build from other builds in the project.

[image: _images/projectdashboard2.png]
Apps that are part of a particular project can be accessed by everyone who is part of that project.
Project members have the ability to test, automate and view reports for any build that is part of their project.

After user selecting the project, the user can select the appropriate build that he/she wish to test.
The user can select build from the build details section by selecting either the app name, version name or version code. The build description helps user to identify the right build.

If the user wishes to upload upload remotely, then he/she can upload build through postman calls.

The user can configure project with bug management settings. Right now we support Jira

 Data Sets

Data Sets

	To create a data set, you need to invoke the following API

HTTP Method: POST

URL: http://<RobusTest URL>/v3/dataset/new?accesskey=<access key>

Payload:

{
 "name" : "<Data Set Name>",
 "desc" : "<Data Set Description>",
 "project" : "<Project ID>",
 "headers" : ["<variable name 1>", "<variable name 2>"],
 "rows" : [{
 "device": "<device id optional>",
 "data" : {"<variable name 1>":"value", "<variable name 2>":"value"}
 },
 {
 "device": "<device id optional>",
 "data" : {"<variable name 1>":"value", "<variable name 2>":"value"}
 }]
}

In the payload, provide the device id if you wish to run a specific data on a specific device. In case, you do not have such a requirement, you can leave the device values blank.

Sample

HTTP Method: POST

URL: http://devicelab.acme.com/v3/dataset/new?accesskey=d2342dsdad231313

Payload:

{
 "name" : "loginDataSet",
 "desc" : "Data Set for multiple user accounts",
 "project" : "d2312312dsadasdad",
 "headers" : ["username", "password"],
 "rows" : [{
 "device": "asda2113ssadad",
 "data" : {"username":"something@something.com", "password":"something123"}
 },
 {
 "device": "",
 "data" : {"username":"someone@someone.com", "password":"someone123"}
 }]
}

	Executing the above API will provide the DataSet in the response with the key _id.

	Update a Data Set

HTTP Method: PUT

URL:

/v3/dataset/dataset_ID?accesskey=access_key

Payload

{
 "name" : "<Data Set Name>",
 "desc" : "<Data Set Description>",
 "project" : "<Project ID>",
 "headers" : ["<variable name 1>", "<variable name 2>"],
 "rows" : [{
 "device": "<device id optional>",
 "data" : {"<variable name 1>":"value", "<variable name 2>":"value"}
 },
 {
 "device": "<device id optional>",
 "data" : {"<variable name 1>":"value", "<variable name 2>":"value"}
 }]
}

	Delete a Data Set

HTTP Method: DELETE

URL:

/v3/dataset/dataset_ID?accesskey=access_key

	Get list of all data sets for a project

HTTP Method: GET

URL:

/v3/datasets/project/:projectID?accesskey=access_key

 Elevated Power Shell Session

Elevated Power Shell Session

To open an elevated PowerShell session, perform the following steps:

	Search for PowerShell in the Windows search box

	Right click on the Windows PowerShell icon and select the option ‘Run as administrator’

	Go to the ~/robustest/tools/android/cmdline-tools/latest/bin folder

 Espresso

Espresso

Introduction to Espresso

Espresso is a testing framework for Android that makes it easy to write reliable UI tests for an app. More information at https://developer.android.com/training/testing/espresso/

How do Espresso jobs run in RobusTest

To run an Espresso job on RobusTest, an API based request should be made to RobusTest. In this request, user can specify the priority of the job (a higher number means higher priority), minimum number of devices required to run the job.

Once espresso job is submitted, the job enters the Pending state.

The RobusTest system checks for jobs in pending state every 100 seconds and picks up a job based on its priority and the number of devices required. If available device count is less than min devices required by job then job will not run in current cycle.

Once a job is picked up to run, it is added in the queue. Once in the queue, the number of devices required are blocked. Each device that is reserved for the job is put through a dry run. In dry run both APKs - the app binary and test binary - are installed on the device, tests are extracted and executed through a quick run to check if the device will be able to run these tests. If the dry run fails on a device, that device is removed from the job. The job will run even if one device of all the reserved devices passed the dry run. If all the devices fail to execute the dry run, then the job will be marked as Failed and will be retried in next cycle. The number of such re-attempts can be configured in the job API request by changing the value of field maxAttempts. Default value of maxAttempts is 5.

Once the dry run is successful even on one of the reserved devices, the associated PR will be blocked as pending with the context set as robustest/espresso and description as Espresso tests are running on RobusTest for job.

Once the dry run is completed, the job moves to the Running state, where the job is now ready to give test cases to devices which have completed their dry runs successfully.

Once the job starts running, the devices start executing tests. Once a test case completes execution on a device, the device requests for the next test case.

During the course of test case execution, one or more of the following may happen

If a test case executes successfully, the device requests for the next test case.
When a device requests for a test and if there are tests remaining, one test case is assigned to the device. If there are no more tests to assign, the device is freed.
If a test case fails, then it is marked as failed and added back to the pool of tests to be retried. The number of such of retries is configurable. When a failed test case is retried, it may run on the same device or on a different device.
If a test case crashes during execution, then it is not retried.
If no response is received from a job for 800 seconds, the job is restarted i.e. the job is suspended, all associated devices are freed and the job is resumed. When the job is resumed, the devices that reserved based on availability. Therefore, the set of devices may differ from the earlier set. In such a case, the tests that are already executed are excluded from the run and only the pending tests are executed.
Once a job completes, it checks to see if there are any devices that are still associated with the job. If such a device is found, it is freed.
Once a job completes, a comment is added to the associated GitHub commit with the following data
Total number of tests
Number of tests passed
Number of tests failed
Number of tests errored
Number of tests skipped
Number of tests crashed
Link to Report
The PR is updated based on the following conditions
Even if one test case crashes, the PR will be marked as Failed
If the number of failed test cases is equal to or higher than the threshold set in the Job API request, the PR will be marked as Failed
If the number of failed tests cases is lower than the threshold set in the Job API request, the PR will be marked as Successful
If the job does not complete within the maxAttempts, the PR will be marked as Failed.

FAQs

Sometimes devices are shown as green (free) on dashboard but still jobs show in queue. What could be the reason for this?

This may happen because of multiple reasons

When starting an Espresso job, in the API request, user has to specify if the devices should be picked up from general pool or from specific group. If user has selected to run from general pool, then even if devices from specific group are available, they will not be picked up for the run. And vice versa.
This may also happen when the minimum number of devices requested is higher than the number of devices currently available in the general or specific pool as has been selected by the user.
This may happen also in the period between the submission of the job and the picking up of the job by the RobusTest system. This duration is usually ranges between 2 to 3 minutes. However, do note that this is temporary and the devices will be reserved once the job is picked up by RobusTest.

If my job does not complete within a certain time, I would like it to be closed.

In case of CI based operations, it is important that a job does not remain in running or pending state forever, since critical code pushes and business decisions need to be made. Therefore when making a request to RobusTest, you can provide an attribute runTimeout. This value takes in the value in seconds. RobusTest uses the value of this attribute and compares it against the duration for which the job has been in the system. If the duration value exceeds the runTimeout then, the job is ended. Note that runTimeout should be used to specify the total time within which the job should be completed including the waiting and running times

Can I close a job after making a job request?

Yes, it is possible to close a job after making a job request. The key is to find out the job that you would want to close and sent a DELETE method to RobusTest Espresso API. In the API you can also provide a reason for closing the job to help create a record.

Usage
? reason=PR has been updated, therefore closing this job and starting a new on

 Run API tests using Karate

Run API tests using Karate

RobusTest enables monitoring and viewing of automation test runs of API tests written using Cucumber/Gherkins [https://cucumber.io/docs/gherkin/] and run using Karate/Maven [https://github.com/karatelabs/karate]. In the following page, we shall walk you through the steps to run your API tests in such a way so that you can push the results to RobusTest.

Pre-requisites:​

1. Apache Maven should be installed on the system on which the tests are going to be run using Karate

2. The path to Apache Maven’s ‘bin’ folder should be added to your machine’s PATH environment variable

	if not added, you can do the same using the following command:

	export PATH=$PATH:<path to Apache Maven bin folder>

Steps for set up and execution:

1. Obtain the latest version of the ‘Karate-API-Testing’ zip file from your RobusTest Point of Contact

	On request, RobusTest provides you with a custom zip file containing the libraries to run your Karate tests.

	Download and unzip the file.

	You should see a folder with the name ‘Karate-API-Testing’.

2. On Terminal, go to the folder ‘Karate-API-Testing/src/test/java’.

​
3. Open the file named reportportal.properties in edit mode and enter appropriate values for the following fields:

	rp.endpoint

	this will point to the robustest hub url

	it will be of the form: <RobusTest URL>/v2/hub e.g. http://devicelab.acme.com/v2/hub

	rp.launch

	This value will the identifier for your test automation job. You can provide any custom string in this field.

	All test runs that should be displayed under the same job should have the same value for this field.

	rp.project

	Project ID of the RobusTest project to which you wish to push your API test reports

	rp.description

	Description of the job that you are running the tests under

	the accessKey parameter in rp.attributesfield
* You can get your access key from your profile section on RobusTest
* accessKey parameter is specified as a key value pair in rp.attributesfield
* Notice the syntax of separating the attributes using semi colon

4. Place your feature files in the Karate-API-Testing/src/test/java/features folder

	5. Executing your API Tests:

	
	Go to the Karate-API-Testing folder and run the command mvn clean test​

	This command cleans your ‘target’ folder and then executes your tests.

	You should now see a job being executed in the Test Runs page of your RobusTest project.

	6. Viewing your reports

	
	On clicking on the job, you can see further details about the various API tests being executed

	On clicking on an API test name you will reach the API test details page. Here:

	you can find information about your test at a test step level

	you have the option to veiw the Karate logs

Grouping API Tests

	Sometimes you may want to group your tests under one or more tags. E.g. Payments, Login, Smoke, Regression, etc.

	You may want to use such tags to view only API tests relevant to you.

	RobusTest provides you a way to group your API tests the way you want.

1. In each feature file, provide the group name as an annotation in the first line : E.g. @movie

	You can also provide more than one Test Group names separated by a space. E.g. @movie @smoke

	See the screenshot below for an example:

[image: _images/testgroup.png]

2. Now run your tests using the command: mvn clean test​​​​.

3. Go to the ‘Test Cases’ section of the job run report on RobusTest.

4. You can now use the ‘Search’ bar to search using the Test Group required. E.g. on searching with ‘movie’, all test cases that come under the ‘movies’ group are listed.

5 Each test case is tagged with the annotations used for its feature files

 Appium Hub 1.0

Appium Hub 1.0

[image: _images/buildURL.png]

Configuration

Using RobusTest Hub, you can run your own Appium tests on devices connected to the RobusTest device cloud. You need make changes at a few places in your test script to get going.

The main points to be taken care of are

	Which Appium server to run on - The Hub URL [Mandatory]

	What build to run on - App/Build details [Mandatory]

	Which device to run on - Device details [Mandatory]

	Allocating the device for test run - Reserving device [Optional]

	How to uniquely identify your test run - Identifier [Optional]

Following are the changes that need to be made

	Change the Appium URL to point to the RobusTest Hub. If you are running your tests on a local instance of Appium using devices connected to your system, the Appium URL will look like

http://localhost:4723/wd/hub

Change this value to point to the RobusTest Hub.

After the change, your RobusTest Hub URL will look like

http://192.168.1.1:3142/wd/hub

Youc can find the Hub Server URL from your RobusTest admin.

	app - Set the app value to the build URL that is created for every build that is uploaded to RobusTest. In case you wish to execute your tests on a specific build, you just need to select that build from the Project Dashboard and copy the link to the build by clicking on the Selected Build URL button. The URL will look like

http://192.168.1.1:8081/build/581b074e7ec1653a30d1f438/581ae4a37ec165084ea9cdc3/581b074e7ec1653a30d1f439.apk

You can also use the standard URL for the latest build. The URL will look something like

http://192.168.1.1:8081/build/581b074e7ec1653a30d1f438/581ae4a37ec165084ea9cdc3/latest.apk

	device - Add the attribute deviceID to the desired capabilities. The value for deviceID should be the unique Device ID generated by RobusTest for the device. This is the attribute that will be used to decide the device on which the tests should run.

The list of connected devices and their IDs can be found out from the Health Page of our instance.

If you wish to select the device programatically, then you can use the devices API.

http://192.168.1.1:3142/v3/devices

The response of the above API looks like below

{“available”: [{“available”: “Yes”, “supportHub”: “Yes”, “gmsversion”: “5.0.2”, “name”: “SM-G530H”, “supportManual”: “Yes”, “supportAutomation”: “Yes”, “adb_id”: “404b6569”, “reservedForProject”: [], “os”: “android”}], “busy”: [], “totalOffline”: 0, “offline”: [], “total”: 1, “totalBusy”: 0, “totalAvailable”: 1}

From the response, one can find out details like availability of device for RobusTest Hub, device name, Android version, etc., This response can be used to filter out devices that can be used to run Appium tests on the Hub.

	Reserving a device - To ensure that the device that you identify for your test run does not get allocated to another job/session, you should reserve your device. Do make sure that you unreserve the device at the end of the test session. Else the device will not be usable by any other user.

Reserve a device

URL:

http://[DEVICE LAB URL]/v3/device/<device ID>/reserve?accesskey=[access key]

HTTP Method: PUT

API Payload:

{
“project”: “<project ID - mandatory>”,
“reserveKey” : “<reserve key for identifying the key - optional>”
}

Unreserve a device

URL:

http://[DEVICE LAB URL]/v3/device/<device ID>/reserve?accesskey=[access key]

HTTP Method: DELETE

Details available at http://api.robustest.com/#tag/device

	RobusTest Identifer - When running jobs on the Appium Hub, there may be many Appium sessions created. In order to group all the test sessions created as part of a single job, use the robustestIdentifier desired capability and give it a value that will be unique for every job but same for all sessions within that job. This will ensure that details for all your test sessions which are part of one job are grouped together and available for analysis.

You can see your Appium Hub sessions on the following URL

http://[DEVICE LAB URL]/#/project/[PROJECT ID]/appium/hub

 Run Roku Tests

Run Roku Tests

RobusTest currently supports running of automation tests created using the JavaScript library.
Read more about the JavaScript Library here

https://developer.roku.com/en-gb/docs/developer-program/dev-tools/automated-channel-testing/javascript-library.md

RobusTest provides a customization of the Roku JavaScript Library to enable running of test cases on the RobusTest device lab.
Download the library from the link below and use it place of the default Roku library

{RobusTest Device Lab}/v3/download/file/automated-channel-testing-master.zip

To run your tests on the RobusTest device lab you need to provide certain capabilities or information.
This information can be provided in the baseCapabilities.js file in the jsLibrary/library folder.

In the baseCapabilities.js file you need to provide the following values

	Project ID - the RobusTest project ID

	Build ID - ID of the Roku built that has been uploaded to RobusTest

	Job Identifier - A string to identify the job under which you are running this test case. This name will be used to group all the tests that are executed as part of a single job. So ensure that it is unique everytime you run the job but remains the same everytime you run a test case within a job.

	Access Key - The unique access key generated for your user account

	RobusTest Device Lab URL - The RobusTest device lab URL on which you shall run your tests. Ensure that you provide it in the format that is specified in the baseCapabilities.js file

In your test case, you shall define the following value

	RobusTest Session Identifier - this will be used to uniquely identify your test case or test session assuming each test session is your test case

Note that the values that you provide in the baseCapabilities.js file can be over-ridden at your test case level.
Check the test_basic.js sample test case to understand better the writing of a Roku test case to run on RobusTest device lab

 Randomize the browser selection process

Randomize the browser selection process

The RobusTest deployment at your location may consist of more than one servers.

When starting a test session using the Selenium Hub on a multi-server deployment of RobusTest, it may be desirable to launch the browser each time from a different server machine at random.

This is in opposition to launching the test session on the browser on the same server machine in every run, thereby increasing the load on the server.

In order to randomize this process, i.e., to launch the browser on a different server machine each time, you need to perform the following steps:

1. Obtain all browsers on all server machines

2. Add the following code to your program:

browsers := model.GetAllAvailableSeleniumBrowsers(*db)
 browser := model.Browser{}
 rand.Seed(time.Now().UnixNano())
 rand.Shuffle(len(browsers), func(i, j int) { browsers[i], browsers[j] = browsers[j], browsers[i] })

3. Now, iterate through the list of browsers until you find one that matches the desired capabilities you have chosen

4. Launch the Selenium test session

 Image-based Verification

Image-based Verification

 Android

Android

To install Android on your machine, follow the following instructions:

1. Go to the following link https://developer.android.com/studio/#downloads

2. Scroll down to the ‘Command Line Tools’ section

3. Depending on whether you are using a Mac, a Linux or a Windows machine, click on the appropriate link and download the zip file.

4. Place this zip file inside the folder: ~/robustest/tools/android/

5. Unzip the file

6. Rename the unzipped folder to cmdline-tools

7. Within the cmdline-tools folder, rename the folder ‘tools’ to ‘latest’

	8. Open the command line

	
	In a Mac or a Linux machine, open Terminal and go to the folder ~/robustest/tools/android/cmdline-tools/latest/bin

	In a Windows machine, start an Elevated Power Shell Session

	9. Install Android as follows:

	
	In Windows, do the following:

	
	Run the following command

	.\sdkmanager --update

	
	Run the command

	.\sdkmanager --list

	From the output of the command above, select the latest version of build-tools. It will look something like this: “build-tools;30.0.2”

	
	Copy paste this string and run the command as seen below

	.\sdkmanager "build-tools;30.0.2"

	
	Run the command

	.\sdkmanager "platform-tools"

	Once installed, Android SDK is successfully installed

	In Mac or Linux machines, run the following commands

	
	Run the following command

	./sdkmanager --update

	
	Run the command

	./sdkmanager --list

	From the output of the command above, select the latest version of build-tools. It will look something like “build-tools;27.0.3”

	
	Copy paste this string and run the command as seen below

	./sdkmanager "build-tools;27.0.3"

	
	Run the command

	./sdkmanager "platform-tools"

	Once installed, android sdk is successfully installed

10. For Windows machines, create the environment variables ANDROID_HOME and ANDROID_SDK_ROOT

	In the Windows Search bar, search using the string ‘env’

	Click on the option ‘Edit the system environment variables’

	In the window that opens up, click on the button ‘Environment Variables’

	Under the section ‘User Variables’, click on the button ‘New’

	Enter the value ANDROID_HOME in the ‘Variable name’ field

	Enter the path to the robustest\tools\android folder in the ‘Variable value’ field. This is usually of the form C:\Users\<username>\robustest\tools\android

	Under the section ‘User Variables’, click on the button ‘New’

	Enter ANDROID_SDK_ROOT in the ‘Variable name’ field

	Enter the path to the robustesttoolsandroid folder in the ‘Variable value’ field. This is usually of the form C:\Users\<username>\robustest\tools\android

	Under the section ‘User Variables’, click and select the environment variable named PATH

	Click on the ‘Edit’ button

	Click on the button ‘New’

	Enter the value %ANDROID_HOME%

	Click on the button ‘New’

	Enter the value %ANDROID_HOME%platform-tools

	Click on OK

	Click on OK

	Close the PowerShell session and start a new Elevated Power Shell Session

 Homebrew

Homebrew

To install Homebrew on your machine, follow the following instructions:

	Install Homebrew by running the following command:

/usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"

	Install Homebrew Modules

	Run the following commands on Terminal. Each command should be run after the command before it has completed successfully without any errors.

brew update
brew uninstall --ignore-dependencies libimobiledevice
brew uninstall --ignore-dependencies usbmuxd
brew uninstall --ignore-dependencies ideviceinstaller
brew install --HEAD usbmuxd
brew unlink usbmuxd
brew link usbmuxd
brew install --HEAD libimobiledevice
brew link --overwrite libimobiledevice
brew install ideviceinstaller
brew link --overwrite ideviceinstaller
brew install mobiledevice
brew install ios-deploy
brew install ios-webkit-debug-proxy
brew install libzip
export LDFLAGS="-L/usr/local/opt/openssl/lib"
export CPPFLAGS="-I/usr/local/opt/openssl/include"
export PATH=/usr/local/opt/openssl/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/opt/openssl/lib:$LD_LIBRARY_PATH
export CPATH=/usr/local/opt/openssl/include:$CPATH
export LIBRARY_PATH=/usr/local/opt/openssl/lib:$LIBRARY_PATH
export PKG_CONFIG_PATH=/usr/local/opt/openssl/lib/pkgconfig
brew install carthage

	Install iOS real device testing dependencies

cd ~/robustest/tools/node/lib/node_modules/appium/node_modules/appium-webdriveragent
./Scripts/bootstrap.sh

 idevicelocation

idevicelocation

To install idevicelocation on your machine, follow the following instructions:

	Download complete project from <https://github.com/JonGabilondoAngulo/idevicelocation>

	A zip file with all folders is downloaded

	Unzip the downloaded file

	Run the following commands:

	./autogen.sh

	make

	sudo make install

	If you face any path related issues while running the autogen.sh script above, run the ‘export’ commands from the Homebrew page and then execute the ./autogen.sh command again

	Copy the binary file idevicelocation from the folder ‘src’ in the unzipped folder and move it to the folder ~/robustest/tools/idevicelocation

 Java

Java

To install Java on your machine, follow the following instructions:

1. Download the appropriate Java JDK from the following website http://www.oracle.com/technetwork/java/javase/downloads/index.htm depending on whether you are using a Mac, a Linux or a Windows machine.

	Note: You need to download the JDK not the JRE

2. Follow the instructions that are displayed by the installer and install Java on your machine.

3. If your computer runs on Windows, then you need to additionally create the JAVA_HOME environment variable as follows:

	Search for Command Prompt

	In the search result, right-click on the icon for Command Prompt and select the ‘Run as Administrator’ option

	On the Command Prompt window run the following command

setx -m JAVA_HOME "C:\Program Files\Java\jdk-14.0.2"

	Use the appropriate installation path and jdk version in the above command

	You should see a message that looks as follows: “SUCCESS: Specified value was saved.”

 Node.js and Appium

Node.js and Appium

To install Java on your machine, follow the following instructions:

1. For Mac and Linux machines:

	Download Node.js for Mac OS from https://nodejs.org/en/download/ (Make sure you download the *.tar.gz file)

	Copy the downloaded file to /robustest/tools folder

	Unzip the file by running the following command

tar -xzf <file name>

	Delete the tar file

	Rename the unzipped folder to ‘node’

	Add Node.js to the system path by running the following command:

PATH=$PATH:~/robustest/tools/node/bin

	Run the following command to install appium

npm install -g appium

	If Appium is already installed, then first uninstall it by running the command:

npm uninstall -g appium

	Then execute the command above to install Appium

	In the setEnvironment.sh file, in the node section, ensure that the path to the node.js folder is correct

2. For Windows machines:

	Download Node.js for Windows from: https://nodejs.org/en/download/

	Select the Windows installer (.msi) file suitable for your system (i.e., 32-bit or 64-bit)

	You can check your windows version as follows:

	Searching for ‘This PC’ on the Windows search bar.

	Then right-click on ‘This PC’ and click on ‘Properties’

	On the page that opens up, you can see the type of Windows version you are currently using

	While installing, change the Destination folder to C:\Users\<username>\robustest\tools\node

	You will have to create the folder ‘node’ inside the robustest\tools folder

	Add C:Users<username>robustesttoolsnode to the PATH environment variable as follows:

	Under the section ‘User Variables’, click and select the environment variable named PATH

	Click on the ‘Edit’ button

	Click on the button ‘New’

	Enter the path to the node folder,

	i.e., C:\Users\<username>\robustest\tools\node

	Provide proper path above by replacing username

	Restart the computer for the path to be updated

	Run the following command: npm install -g appium

Node.js and Appium are now installed

 Python

Python

To install Java on your machine, follow the following instructions:

1. Python comes pre-installed with Mac and Linux machines

2. For Windows, download the latest version of Python for windows from http://python.org/downloads/

	An executable Installer file is downloaded

3. Run the Installer by clicking on it.

4. In the window that opens up, make sure that you enable the checkbox ‘Add Python to PATH’

5. Click on ‘Install Now’

6. After successful installation, ensure that the option - ‘Disable path length limit’ - is chosen

7. Python now gets installed in the folder - C:Users{username}AppDataLocalProgramsPythonPython38-32

	The last part of the folder structure (I.e. Python38-32) reflects the version of python you have installed. In the above case it is python 3.8

8. Close the PowerShell session and start an Elevated Power Shell Session

9. Type the command

python --version

10. Hit the ‘Enter’ key. If the python version number is displayed then it means that python has been installed correctly on your system

 Python Virtual Environment

Python Virtual Environment

To install Python Virtual Environment on your machine, follow the following instructions:

	On Windows,

	In Windows PowerShell, go to the robustest folder

	Run the following commands

easy_install pip

	You can obtain the latest version of pip by running the command pip install --upgrade pip

	If you face any permission issues then run the following command: pip install --user —upgrade pip

	Run the following commands

	pip install --user virtualenv

	py -m v env virtualenv

	.\virtualenv\Scripts\activate (to activate virtualenv)

	If you get an error message stating that you are unable to run a script, then run the following command on PowerShell

	Set-ExecutionPolicy RemoteSigned and hit Enter

	Type A and hit Enter

	Now run the activate command above

	pip install -r requirements.txt

	The requirements.txt file will be available within the robustest folder

	deactivate

	Create the VIRT_ENV environment variable

	In the Windows Search bar, search using the string ‘env’

	Click on the option ‘Edit the system environment variables’

	Click on the button ‘Environment Variables’

	Under the section ‘User Variables’, click on the button ‘New’

	Enter VIRT_ENV in the ‘Variable name’ field

	Enter the path to the robustestvirtualenv folder in the ‘Variable value’ field. This is usually of the form C:\Users<username>\robustest\virtualenv

	Go to the folder ~/robustest/virtualenv and rename the folder ‘Scripts’ to ‘bin’

	For Mac and Linux,

	On the terminal, go to the robustest folder

	Run the following commands

	easy_install pip

	pip install virtualenv

	virtualenv virtualenv

	source ~/robustest/virtualenv/bin/activate

	pip install -r requirements.txt

	The requirements.txt file will be available within the robustest folder

	deactivate

 Xcode

Xcode

To install XCode on your machine, follow the following instructions:

	Install XCode from Apple App Store

	Run/Open Xcode once to ensure that Command Line Tools have been installed

	If command line tools have not been installed, then, after completing XCode installation, open command-line terminal

	Run the following command in the terminal

xcode-select --install

	In the pop-up screen, the system will ask for confirmation of installation of Command Line Tools

	Confirm by clicking on ‘Install’

	Signing in to XCode

	Open Xcode

	Go to Xcode -> Preferences -> Accounts

	Click on the ‘+’ icon to add an account

	Sign in with your Apple ID

	Click on ‘Download Manual Profiles’

	Click on ‘Manage Certificates’

	Click on the drop down at the bottom-left of the window

	Select the option ‘Apple Development’

	A new active iOS Development Certificate is seen on the list of certificates. Click on ‘Done’.

	Go to Xcode -> Preferences -> Locations

	Click on the ‘Command Line Tools’ dropdown and select your version of Xcode

 Integration: Report Portal

Integration: Report Portal

RobusTest supports the pushing of test reports to Report Portal. For this you need to configure the system. Find the instructions below

Admin Console

The first step is to add your Report Portal instance to RobusTest. This is done in admin console.

	Go to the Integrations Section in Admin Console

	Click on the + button to create a new Integration

	Make the following selections

	Service Type should be Reporting

	Service should be Report portal

	Provide a name for this integration

	Provide the Base URL for Report Portal. This should be of the form http://{Report Portal URL}/api/v1

	Provide the Auth Token

	Click on Save

	Once you click on Save and if the integration is successfully completed, your Report Portal projects should be visible.

Project Dashboard

	Go the project which you want to integrate with your Report Portal instance

	Select Service Type as Reporting

	Select Service as Report portal

	Select the Report Portal instance from the Integrations drop down

	Select the Report Portal project from the Project drop down

	Click on Save

	Your RobusTest project is now integrated with the selected Report Portal project and your test runs data will now be pushed to the select project in Report Portal.

 Integration: Report Portal

Integration: Report Portal

RobusTest supports the pushing of test reports to Report Portal.

In addition to test reports you can also push the following artefacts to Report Portal:

	Screenshots

	Device Log

	Framework Log

In order to do so, you need to do the following:

	Create an Integration for Report Portal

	Update the Test Data Collection section of the run setting

	Submit the job using the run setting

1. Creating an Integration for Report Portal

The first step is to add your Report Portal instance to RobusTest

	Go to the Integrations Section in the Admin Console

	Click on the + button to create a new Integration

	Make the following selections:

	Provide a name for this integration

	In the ‘Service Type’ drop down, choose the option ‘Reporting’.

	In the ‘Service’ drop down, choose the option ‘Report Portal’.

	Provide the Auth Token for your Report Portal Instance.

	Provide the Base URL for Report Portal. This should be of the form http://{Report Portal URL}/api/v1

	In the ‘Project Name’ field, enter the name of the Report Portal project to be used.

	Click on ‘Save’. An integration entry for report Portal is now successfully created.

	Note the Integration ID for the Integration you created. This is the value displayed below the Integration name.

2. Updating the Test Data Collection section of the run setting

	Go the project in which you want to execute jobs whose results need to be pushed to your Report Portal instance.

	Click on Run Settings. You are now on the ‘Run Settings’ page.

	Create a new run setting or open an existing run setting in ‘Edit’ mode.

	Scroll down until you see the Test Data Collections section.

	To create Test Data Collection entries for Report Portal, have a look at: Test Data Collection: Report Portal

	To push data to Report Portal, refer to the following: Pushing data to Report Portal

	Once the necessary changes have been made, save your run setting.

3. Submit the job using the run setting

	Now that you have created your run setting, submit a job using this run setting,

	The job will now push your test run results to the selected project in Report Portal.

 Connecting your local devices to RobusTest Device Lab

Connecting your local devices to RobusTest Device Lab

Requirements

	A computer system running Mac OSX, Linux, Windows

	RobusTest Connect. You can get the RobusTest Connect software from link shared by RobusTest

	Java Development Kit

	For Android Devices

Android SDK

	For iOS Devices

XCode

Python3

HomeBrew

HomeBrew Module - libimobiledevice

	Appium - To run Appium tests, install Appium and all recommended dependencies.

iOS Real Device - github.com/appium/appium-ios-device

Installing RobusTest Agent

	Unzip the downloaded software. The unzipped file should give you a folder “robustest”

	Inside the robustest folder, you will find RobusTest_Connect.sh file

	In case you are using an Android device, open this file in a text editor and provide necessary path for Android SDK

	Open your terminal (command line)

	Move to the robustest folder

	Run the RobusTest_Connect.sh script by running the command ./StartRobusTestAgent.sh from the command line

Enable Appium log streaming through RobusTest

In your appium installation look for the logsink.js file in the following folder
<node installation folder>/lib/node_modules/appium/build/lib
Replace the logsink.js file in your appium installation with the logsink.js file available here. Make sure you use the logsink.js file which is appropriate for your Appium version.

 Manual Testing

Manual Testing

Now that you have created a project and selected a build to test, you may want to get right into it and perform some manual testing on your app.

To start a Manual test session:

	Click on the ‘Manual’ icon on the Project Dashboard

A device selection screen now pops up. You may search for a device on the ‘Device selection screen’ based on device name, platform version, screen size, hardware configuration (e.g. Memory and CPU), node name, node IP, etc.

	Select the device you wish to test on by clicking on the ‘Select’ button under the device

Note: RobusTest provides you a way to select multiple devices in parallel to perform your manual testing. To know more go to the page on Multi-device testing

	Once you have selected the device, click on the ‘Play’ button on the top right corner.

The device screen now comes up and you can see that your app is installed on the device.

Congratualtions! You have succesfully begun a Manual test session

Now let’s see how RobusTest helps you to test better

The Manual Test Session, consists of 2 parts:

	Device screen

	Test Configuration section

1. Device screen

The device screen is where you perform your testing. You can perform various gestures like tap, swipe, scroll and entering text with the help of mouse/trackpad and keyboard. The buttons at the bottom of the screen are available for use as Android navigation buttons.

2. Test Configuration section

The ‘Test Configuration’ section enables you to test better and easier by providing various add-on features

Thse features are available across 2 menus:

	Device Configuration menu or the Horizontal menu

	Vertical menu

a. Horizontal menu

This menu provides you options to perform various configurations related to the device. Let’s have a look at each of them

1. Location Simulation

This feature allows you to test as if the device is present at a different location than where it actually is. This is done by simulating the location on the device.

Pre-requisites:

On the device:

	in Developer options:
* enable ‘Mock Locations’
* set the Nizedha app as your mock location app

	in ‘Locations’, set the ‘Location Mode’ to ‘Device only’

Once the pre-requisites have been met, you can simulate any location as follows:

	Click on the ‘Simulate Location’ button

	Type the name of the location in the ‘Search location here’ field and select from the drop down. Alternatively, you can manually pin the location of your choice on the map

	Once your location has been pinned, click on the ‘Set Location’ button

Your device will now behave as if it is situated at the location chosen by you

2. Run ADB commands on device

Sometimes, as part of your testing, you may want to run a few ADB commands on the device under testing. You can do so by clicking on the ‘Run ADB commands on device’ button.

This brings up the Command Line Interfce from where you can execute adb commands directly on the device.

3. Enable/Disable Navigation menu on device

This button enables/disables the Android navigation menu bar at the botton of the device screen.

4. Device screen size configuration

These buttons enable you to increase the screen size, decrease the screen size and to reset the device screen size to its default setting. This is useful in case you want to look at the app in more detail and want to verify the rendering of various objects on the screen.

5. Device screen ratio configuration

These buttons enable you to increase or decrease the screen ratio.

This feature is helpful in scenarios, where the network bandwidth is low and the user would still like to test.

Increasing the screen ratio decreases the resolution of the device screen and enables the user to continue testing at a lower bandwidth.

Decreasing the screen ratio enables the user to test on the device screen at higher reslution.

6. Device screen rotation

You can test the device in Landscape and Portrait modes by rotating the device screen using these buttons

b. Vertical menu

This menu provides the user information that would aid in the testing process. Let’s go through each of them.

1. Session Information

Clicking on this button provides you all details regarding the manual test session in progress. This includes information about:-

	the build - App name, build version, last uploaded, etc

	the device - Device name, ADB ID, OS version, etc,

	the project - Project name, Last build uploaded, etc

2. Focused View

Clicking on this button provides you a distraction-free view of the device screen so that you can focus solely on your testing

3. Create & View Contacts

The ‘Contacts’ feature is useful in use cases where you need to make calls or send SMSs to specific contacts or phone numbers.

You can add names to the contact list and specify their contact numbers. Now you can call or send an SMS to these contacts from the device on which you are testing.

4. Create & View Notes

The ‘Notes’ feature enables you to save tidbits of information that may be of use to you at a later point in time or perhaps information which you may want to share with your project members. The notes you create are available to any project member even after the end of the test session in which the note was created.

5. Execute Deeplink

This feature enables you to test deeplinks being used in your app. Provide the deeplink and, if required, the package name. Then click on ‘Execute’. You can now see the deeplink being executed on the device

6. Copy from device clipboard

Sometimes the need arises where you may want to copy data from the device screen, say, - maybe a text in an app page or a URL opened on a browser on the device - to your own computer or laptop.

In such cases, do the following:

	Copy the text you want to retrieve onto the device’s clipboard by selecting and long pressing it

	Now click on the ‘Copy from device clipboard’ button in your Manual test session. This data is now available on the clipboard of your computer.

	Paste (Ctrl+V) the text anywhere on your computer

7. Device Screenshot

This feature enables you to take capture the device screen at any point during testing. You can use this to highlight an issue and share it with your colleagues

8. Burst Mode Screenshot

Burst Mode is an advanced mode of taking screenshots. On clicking on this button, for a period of 30 seconds, a screenshot is automatically taken everytime there is a change on the device screen. At the end of this period, you can individually edit and download each screenshot.

This feature proves very helpful in cases where you would like to capture an entire flow in your testing scenario.

9. Device Log

You can view the logcat report in a tabular format with options to filter by the log level. You also have the option to download the log in CSV format.

10. ANR Log

The ANR log or the ‘Application Not Responding’ report is generated in the event that your app crashes. This log gives you significant information in determining the casue of the crash and is also availble for download.

11. Share Test Session

If you encounter a situation where you find a specific scenario in your app flows that you would like to cross-check with or show to your colleagues but they aren’t nearby, don;t worry, we got your back.

The ‘Share Test Session’ featuer enables you to collaborate with colleagues by sharing your device screen with them.

You can share your device screen in two ways:-
a. by sending them a link to your device link by clicking on the ‘Copy Share-Link to Clipboard’ button
b. by scanning the QR code displayed with a mobile phone

Once your colleagues click on the link you shared or fininsh scanning the QR code, not only can they see you perform various actions on the device screen, they can also interact with the same device screen through their computer or mobile device.

12. Connecting to ADB remotely

This feature was developed with the intention to help your dev team.

Let’s say you find an issue while testing and reach out to a developer for support. If this developer would like to access the ADB on the same device for further investigation, she or he can do so remotely by running the command displayed on your screen.

They can now work on the device as if it is connected directly to their own computer.

This feature is also of use to developers who may want to test their code while developing on Android Studio

13. Switch to multiplexing

You can toggle between multi-device testing and testing in a single device using this button.

14. Log bug

Use this feature to directly logs bugs that you encounter while testing into your bug tracking system, without moving away from your test session.

RobusTest supports API integration with a host of third-party bug tracking software such as JIRA, Bugzilla, etc.

Once integration with the bug tracking software is enabled from the Admin Console, you can start logging bugs.

While logging the bug, you can choose the the Assignee, the reporter, the type of issue, a summary of the issue and a detailed description. You also have the option to attach the device logs, the ANR log and screenshots as well.

At the time of logging of the bug, in addition to the above details, RobusTest will add more information to the ticket pertaining to the app, app version, OS version, device details, project details, etc

15. Change Wifi

Sometimes you may want your test device to connect to a diffefrent Wifi network. In such cases, you can use this feature to select the Wifi network of your choice by providing the SSID and Password.

16. Install Build

This option enables you to select and install a build of your choice from the options provided in the drop down. Only builds previously uploaded to your project will be avilable for selection

17. Network Shaping

Network Shaping enables you to select a specific kind of network to test your app on. E.g. 2G, 3G, 4G, etc. You are enabled to create an ATC Network profile which simulates charcteristics of the kind of network you choose. You can knowmore about creating ATC profiles in the Admin Console section.

Once your testing is complete, you can click on ‘End Session’ button to exit the Manual test session.

 Manual Testing

Manual Testing

[image: _images/deviceselection.png]

Once you have selected the build you wish to test, click on the Manual tile to start executing your manual tests.
Clicking on Manual tile will show you the device selection dialog. Select the device you wish to test on by clicking on the Select button.

Alternatively, you can also filter devices by platform version, screen size, hardware configuration e.g. Memory and CPU.

Once you select the device, the device is made available to you - but only after the earlier sessions have been cleaned up and any unwanted apps have been removed. Once the device is ready for use, the selected build is installed on the device and is ready for you to start your tests.

The Manual test screen consists of three main parts

[image: _images/manualtesting.png]
Device Screen: This is the screen of the device that you wish to test on. You can perform various gestures like tap, swipe, scroll with the help of mouse/trackpad and keyboard. The buttons at the bottom of the screen are available for use as Android navigation buttons.

PS: We recommend using a mouse (of the computer kind) as opposed to a trackpad for a better test experience.

Test Configuration Section: This section provides features to perform the tests in an enhanced environment and to make the job of testing easier. Following is a brief on each of these features

[image: _images/manualtestheader.png]

	Simulate Network Condition - Use this option to simulate a specific type of network e.g. EDGE, HSPA, 3G, WiFi. Note that all the network conditions are simulated on WiFi. You can also use this feature to turn off WiFi and test how your app works without data network.

PS: Your device could also have data network through carrier, in which case you can turn it off for correct results.

	Simulate device location: Use this feature to set the location of your device by providing the latitude and longitude of the location you wish to set the device location to.

	Simulate Device Orientation: You can use this feature to simulate the orientation of the device. Change device orientation to test app performance and functionality in landscape and portrait modes.

	Device Logs: You can view the logcat report in a tabular format with options to filter by tag or by the log level. You can also export the log in CSV format. You can also view the Application Not Responding(ANR) log report to investigate any cases of, well, “Application Not Responding”

	Control Screen Size: You can also control the size of the screen using the slider widget. This is useful in case you want to look at the app in more detail and want to verify the rendering of various objects on the screen.

	Collaborate: While you are testing your application, you can easily collaborate with your team by sharing the device screen with them. You can also get the screen of the device you are testing on, on your own mobile device by scanning the QR code on the collaborate pop-up.

PS: Note that in case of enterprise installations, your RobusTest installation should be reachable from the device or computer you are using to access the device.

	Screenshot - If you wish to take screenshot of a particular screen on your app, you just need to click on the Screenshot button.

	Distraction-free mode - Use the device in this mode, in case you wish to blank out everything else on the manual test screen and view just the device.

Performance Graph: The performance graph has three sub-sections - CPU, Memory and Network.

	In the CPU graph you can monitor the percentage of CPU being used in User and Kernel modes.

	In the Memory graph, you can monitor the memory being used by the app including heap allocations. The following link is a useful place to start understanding the various metrics presented in the Memory graph http://developer.android.com/tools/debugging/debugging-memory.html

	In the Network graph, you can look at the data exchanged from the device to the network - in real time as well as cumulatively.

These graphs are very useful in studying the performance of the app especially with respect to any actions performed on the app.

Once your test is complete, you can click on End Session to exit the test session.

 More about functions

More about functions

1. Setup Functions

While creating a function, the user has to choose an option from the ‘Category’ drop down to determine the type of function being created.

By default, this dropdown has the value ‘None’. Functions created using this default value are your regular functions. They are created with the intention of utilising the re-usability aspect of a function.

The second category of functions are what are known as Setup functions They are a unique category of functions that RobusTest enables you to create.

Sometimes, there occurs scenarios in which:

a. prior to a test case being executed, a series of actions need to be performed to set the test data bed and bring it to a specific state.
b. after a test case has been executed, a series of actions need to be performed to reset the test data bed or bring it to a required state.
c. both - points a. and b. above apply

Such scenarios are recorded as part of Setup functions.

	Setup functions are used for setting up or tearing down of the test bed before or after the actual test case is executed.

	Setup functions are not considered a part of the actual test case being executed.

	If a test step within a Setup functon fails, then, unlike a regular function, it does not result in the failure of the test case that calls the setup function.

2. Functions within a function

Another functionality that RobusTest provides is the ability to call one or more functions within a function.

This capapbility allows you to create highly modular test cases that greatly helps to enhance the readability of your test cases as well as allows you to maintain and update your test cases more easily.

E.g. Let us say, you want to create a test case that allows a customer to select a specific billing plan and then pay for it.

This test case could include multiple functions to perform the following actions:

	Login to the app

	Enter Customer information

	Select a type of purchase

	Select a billing option

	Execute a payment

Each of the above steps in our example is a function. Each of these functions could themselves constitute of one or more functions.

E.g. the function ‘Enter Customer Information’ above may constitute of the following functions:

	Enter customer Personal details

	Enter customer Billing address

	Enter customer Shipping address

Designing test cases in the above manner allows you to easily understand the scenario being tested and provides you more control when maintaining and updating test cases.

3. Functions and Parametrisation

 Create Project

Create Project

Almost all activity that you do to test your mobile app will be part of a project. With RobusTest you can create a project to facilitate collaboration within the team and also to act as a logical place for all your builds, test cases, test suites, test runs and test reports.

[image: _images/uploaddialog.png]

The first step towards creating your project is, of course, to upload your app.
This can be done by clicking on the Add New App button on the landing page.
In case you wish to just try out RobusTest you can also use a sample app that we provide on the Upload Screen.

When you upload an app, you have the choice of adding to an existing project or to create a new project for your app.
You should also provide a build description to uniquely identify your build from other builds in your project.

[image: _images/uploaddialog1.png]
Apps that are part of a particular project can be accessed by everyone who is part of that project.
Project members have the ability to test, automate and view reports for any build that is part of their project.

Once you have confirmed the project name and other details of your app, click on Save to add your app to RobusTest.

Once your app is uploaded to your project, you can access it by clicking on your project’s tile.

After selecting your project, select the appropriate build that you wish to test.
You can select your build from the project details section by selecting either the app name, version name or version code of your app. Your build description helps you identify the right build.

 Types of Projects

Types of Projects

RobusTest enables you to create 4 types of projects depending on your testing requirements:

	Android App Project

	iOS App Project

	Mobile WebApp Project

	Device Only Project

Let’s have a brief look at each of them:

1. Android App Project

Select this option when your goal is to test an Android app. Once the project has been created, you can upload your *.apk file or app build to the project and begin testing on the same.

2. iOS App Project

Select this option when your goal is to test an iOS app. Once the project has been created, you can upload your *.ipa file or app build to the project. Once oyour iOS devices are set up you can begin testing on the uploaded build.

3. Mobile WebApp Project

Select this option if your intention is to test a Mobile WebApp. On doing so, you will now be prompted to enter the URL to be tested. Enter the URL for the WebApp and create the project.

In a mobile WebApp project, in order to test, you need to do the following:

	Select a device for testing

	Select a browser on which you would like to open the WebApp
- you will be provided a list of browsers to choose from. These are browsers that are available on the selected device

	Once your selections are completed, the Mobile WebApp will be launched on the browser you selected on the device. You may now commence with your testing.

4. Device Only Project

This type of project is helpful when your goal is not to test an app but to test SIM related use cases. E.g. Making phone calls, sending SMSs, checking associated rate changes, etc.

 Pushing data to Report Portal

Pushing data to Report Portal

	RobusTest provides you the option to send one or more artefacts to Report Portal.

	In your run setting, you need to create a separate test data collection entry for each artefact that you wish to push to report Portal

	It is mandatory that you have one entry where the test data point has the value stats

	E.g., if you want to push the deviceLog to Report Portal, you need to create two test data collections in your run setting - one with test data point stats and the second with test data point deviceLog

	Conditional sending of data

	For device logs, framework logs and screenshots, you have the option to push data to Report Portal conditionally.

	This can be done through the ‘Invoke Conditions’ section of the test data collection entry.

	In order to set a conditon, click on the + sign next to the label testDataCollections.invokeConditions

	An entry for a condition is now seen generated.

	The first condition entry will be named Condition # 1

	On expanding the condition, you see that there are three fields to be filled in:

	attributeName - this is the attribute on which you want to set your condition

	attributeValue - this is the value of the attribute that you are looking for

	operator - this is the conditional operator to be checked

	E.g. Let us say you want to send to Report Portal the following data for a job that is executed:

	the framework logs only for test cases that have failed

	the screenshots only for test cases that have passed

	To do so, you need to create 3 test data collection emtries:

	the first test data collection entry:

	this will have stats as the test data point value (as this is a mandatory entry)

	the second test data collection entry:

	this will have result as the test data point value

	for this test data colletion you will create a condition with the following values:

	attributeName : status

	attributeValue: Fail

	operator : =

	the third test data collection entry:

	this will have screenshot as the test data point value

	for this test data colletion you will create a condition with the following values:

	attributeName : status

	attributeValue: Pass

	operator : =

	Note: Conditions cannot be set for test data point value stats

	You can set more than one conditions for each test data collection entry

 Advanced Recording Concepts

Advanced Recording Concepts

Recording a test case involving OTP verification

In some test cases, the device receives an OTP from the server as a text message or as an email. The user needs to input the secret number into a text field for verification. RobusTest has libraries to support such scenarios and following is a brief idea on how such a test case can be recorded.

Recording a test case with OTP received as text message

	Proceed to record the test case

	Once you receive the OTP message on your phone as a text message, pause the recording.

	Read the message to find the OTP

	Return to the application sceen

	Enter the OTP that you have read from the Text message in the OTP text field

	Proceed to record the rest of the test case

	Once the test case recording it complete, save the test and exit the test session

	Go to the Test Script tab in the test details page

	Look for the step where you requested for an OTP - this is most probably a button click

	Right below the step where the request to get an OTP is made, paste the following piece of code

#wait for 30 seconds to get SMS. Change it according to your app
time.sleep(30)
#invoke the function to get OTP from the device
#provide the sender name as it appears on the device and a complete sample message
otp = self.getOTPFromSMS(‘<SENDER>’, '<SAMPLE MESSAGE>')

e.g. If your server sends an OTP message from TD-SAMPLEAPP and the message sent is “Thank you for signing up. Your OTP is 234567” then your invocation statement should look like

otp = self.getOTPFromSMS('TD-SAMPLEAPP', 'Thank you for signing up. Your OTP is 234567')

The value of the OTP gets captured in the variable “otp”

In the next statement in the code, where the OTP value is entered in the text field, replace the variable used to enter OTP with the otp variable.

e.g. The statement to enter a value in the text field may look like

Type_123456_in_EditText_vericode1_ = self.getElement("Type_123456_in_EditText_vericode1_", "EditText com.flipkart.android:id/vericod")
Type_123456_in_EditText_vericode1_.send_keys(self.userData["EditText com.flipkart.android:id/vericod"])

After replacing it with the variable “otp”, the statement looks like

Type_123456_in_EditText_vericode1_ = self.getElement("Type_123456_in_EditText_vericode1_", "EditText com.flipkart.android:id/vericod")
Type_123456_in_EditText_vericode1_.send_keys(otp)

 Recording Test Case

Recording Test Case

[image: _images/recording_main.png]

On the project page, click on the Record button to start a recording session. In the recording session, you can record a new test case. On the device selection screen, select the device you wish to record on. Remember that the test case that you record will run on any device irrespective of the device that you recorded your test case on.

After selecting the mobile device, you will be taken to the record session page. The page consists of the device screen, a table of automation steps that is generated as actions are recorded and a header with options for creation for automation tests.

There are various options available in the header that help in creation of your automation test

[image: _images/recording_header.png]

	Information button - Hovering over the information button gives you information on the app, its version and the device details.

	Back button - records an action of a back button being pressed

	Enter value - allows user to send input to an input object on the app

	Background app - sends the app to the background for 10 seconds

	Reset Application - resets the application to make it a fresh installation

	Search Key - Click on this button to add an action for tapping on Search Key on the device keyboard.

	Enter Key - Click on this button to add an action for tapping on Enter Key on the device keyboard.

	Hide Keyboard - hides the keyboard on the screen to allow the user to access other objects

	Swipe - Used for recording a swipe action on the device screen. To record a swipe action, just click on this button and record the swipe action on the screen.

	Pause Recording - pauses the recording to enable the user to perform actions on the device or app which s/he does not want to be recorded in the test script.

When you hover your mouse pointer over the app that you are testing, you will notice a rectangular placeholder overlaid on top of various objects on the screen. You can also find the name of the object that is currently selected in the header. When a particular object is highlighted using the placeholder, it is selected and you can record various actions related to that object. Upon clicking on an object, you will get recording options related to that object. Some of the popular actions are

	Tap - this records a Tap action on the object that you have selected.

	Click - this records a Click action on the object that you have selected.

	Long Press - this records a Long Press action on the object that you have selected.

	Zoom - this records a Zoom In action on the screen

	Pinch - this records a Zoom Out action on the screen

	Verify Object - this option allows user to create a check (or an assertion as automation engineers would call them) on an object. In the verify dialog, you will notice all the attributes for the object is selected, along with their respective values. If you wish to place a check on a particular object attribute(s), just check the box next to it. When the test case runs, it will check to ensure that the value for that attribute is as expected. In case the value is not as expected, the test step fails.

	Inspect Element - this option allows user to study the object and its attributes. This is useful for advanced users and for debugging.

Every action that you record on the app is added as a step in the test case table.
There are many useful option available as part of the Recording session.

	If you wish to delete a step you can do that by clicking on the delete button.

	If you wish to re-run a step or a group of steps, you can do that by selecting the steps and clicking on the Run Steps button in the header.

	You can save your test case and continue the recording session. Once you have saved your test case, you could either update it or create a new one.

	You can also edit the name of the test step to make it more intuitive.

	An orange highlighter points to the location of the current execution pointer

	The pin icon in the Action column enables user to select the current execution point

When a user clicks on a text field, the system shows a text box to enter the text value.
When user enters a value in the text box, this is recorded as an input value for the field.

After a test case has been created, click on the Save button to provide a name and save this test case. Click on End session to close the recording session without saving the test case.

Upon saving the test case, you will see your saved test case along with the actual test script and related information. There are four tabs on the test case page.

	Test Step: This tab lists the steps of the test case

	Test Script: This tab shows the test script to be executed when the automated test case runs. The script is shown in a smart script editor. If the user wishes to add custom code to his/her test scripts, s/he can do that in this script editor. The editor also checks for syntax correctness.

	Meta Data: The test script has been designed in a modular way to separate the app objects from the test script. This ensures that the test case can be easily updated and maintained as builds change over time.

	User Data: In line with the modular design, the user data too is separated out from the test script and is available in the User Data tab.

You can click on the End Session button to end the recording session.

Re-record a test case

Re-record is a feature used to edit an existing test case without writing any code.
It can also be used to create a new test case by extending an existing one.

When a user clicks on Re-record, the device selection menu is displayed.
Upon selection of a device, the re-record screen is shown.

The re-record screen resembles the record screen with a few additions.

Play: Clicking on the Play button executes one step at a time. When a user wants to insert a new step, s/he just needs to Play until they reach the step after which they need to record the new step. Then they can record their action as they would do while originally recording a test case. After adding new steps or deleting an existing step, the user can click on Save to update the existing test case. Alternatively, the user can also use Save As to save as a new test case.

 Espresso Run Settings

Espresso Run Settings

 Running Automation Tests

Running Automation Tests

[image: _images/adminserver.png]

To run your automated test cases, you need to organize them in a Test Suite. Click on Run and you will be able to see all the existing test suites that have been created by you or members of your project.

You can either run and existing test suite or create a new one.
Click on “New Test Suite” button to create your new test suite.

You need to provide a name for your test suite and select the test cases you wish to add to the test suite. Once you click on Create, the Test Suite is created and is ready to be run.

Now you can click on the Run button for the Test Suite to create a Test Run.

You will be asked to provide a name for the test run (optional) and select the device(s) you wish to run the Test Suite on. After providing appropriate information, click on Run to execute your automation test suite.

Reports

Once your test run completes its run, you can view the detailed execution report in the Reports section.

 Manual Run Setting

Manual Run Setting

Manual Run Setting is used when starting a new Manual Test Session

A Manual Run Setting consists of two kinds of settings:

1. General Settings

2. Performance Settings

1. General Settings

By default, the ‘General Settings’ section has the following parameters and values:

	a. reset

	
	default value: no

	ensures that the app is not reset

	b. uninstallAppAfterRun

	
	default value: yes

	this ensures that the app is uninstalled from the device at the end of the test session

	c. uninstallAppBeforeRun

	
	default value: yes

	this ensures that the app, if already installed, is uninstalled from the device at the beginning of a new test session

You can add/modify/delete other parameters to your run setting

2. Performance Settings

This section determines whether the performance metrics of an app needs to be captured or not

	a. monitor

	
	default value: false

	if true, enables the monitoring of various performance parameters such as Memory, CPU, Network Activity, etc.

 Run Settings

Run Settings

Run Settings

	setting name

	desc

	pagesourceTimeout

	“time (in secs) system should wait for pagesource”

	recordingMode

	“mode in which RobusTest automator creator session should start. Values - automation, automationAdvance, manual”

	streamPagesource

	“should the pagesource stream periodically or on demand. Values - true, false”

	enterTextMethod

	“method for entering values in text fields. Values - appium,robusest,adb for android | appium for iOS”

	waitforElement

	“time (in secs) system should look for an element”

	checkElementIsVisible

	“”

	handleAndroidPermissionPopup

	“method for handling permission pop ups in Android. Values- allow, deny, null”

	deviceReset

	“should the device be reset at the start and end of test session”

	uninstallAppAfterRun

	“should the app under test be uninstalled after test session”

	uninstallAppBeforeRun

	“should the app under test be uninstalled before test session”

	
	“JOB”

	maxJobAttempts

	“number of times job should be attempted”

	maxTestCaseAttempts

	“number of times a failed test case should be attempted”

	addMoreDevices

	“should system enable addition of devices once test run has started. if true, devices may be added even beyond maxDeviceCount”

	retryOnSameDevice

	“should a failed test case be retried on the same device”

	testcaseTimeout

	“maximum time (secs) for a test case to run”

	devicePreparationTimeout

	“”

	tags

	“generate custom tags for a test case result based on log content”

	
	“name for the tag”

	
	“source to look for search term. Values - result, deviceLog”

	
	“term to search for”

	
	“look for the presence or absence of the search term. Values - true, false”

	analysis

	“set job pass or fail status based on custom logic; multiple conditions are applied in order”

	
	“name for the entry”

	
	“source to consider for creating the condition. Values - job, tag”

	
	“attribute to consider when calcalating. Values - pass, fail, error”

	
	“metric to consider when calculating. Values - %, count”

	
	“threshold to compare with when comparing”

	
	“should the job status be changed based on the condition”

	
	“value for status of the job”

	
	“value to be set for the associated Git pull request. Values - failure, success”

	
	“status of the job for email. Values - pass, fail”

	runTimeout

	“time (in secs) the job can be in running state before being discarded”

	queueTimeout

	“time (in secs) the job should wait in the queue before being discarded”

	limitToMaxDevice

	“should the number of devices be limited to maxDeviceCount”

	firstRetryOnSameDevice

	“retry the first attempt after a failure on the same device”

	
	“UNINSTALL APPS”

	uninstallApps

	“comma separated list of app packages to uninstall before running job”

	
	“PERFORMANCE”

	monitor

	“should the system monitor performance”

	saveData

	“should the performance data be saved in RobusTest”

	params

	“TBD”

	
	“HOOKS”

	influxDB

	“influxDB Host”

	
	“influxDB Database Name”

	
	“influxDB Username”

	
	“influxDB Password”

	email

	“Email addresses to notify when job completes”

	
	“Email addresses to notify when job fails”

	
	“Email addresses to notify when job passes”

	rest

	“URL for the listener”

	
	“HTTP Method to be used”

	
	“Authtoken, if any”

 RobusTest Automator Run Setting

RobusTest Automator Run Setting

A RobusTest Automator Run Setting is used while starting an Automation Test Session using the RobusTest Automator.

The default automator run setting consists of the following 3 groups of settings:

1. General Settings

2. Appium Settings

3. Performance Settings

1. General Settings

By default, the ‘General Settings’ section has the following parameters and values:

	a. reset

	
	default value: no

	ensures that the app is not reset

	b. uninstallAppAfterRun

	
	default value: yes

	this ensures that the app is uninstalled from the device at the end of the test session

	c. uninstallAppBeforeRun

	
	default value: yes

	this ensures that the app, if already installed, is uninstalled from the device at the beginning of a new test session

You can add/modify/delete other parameters to your run setting

2. Appium Settings

This section enables users to customise values for parameters to be passed to the Appium automation framework. This includes various Appium Desrired Capabilities such as ‘automationName’, ‘fullReset’, ‘noReset’, etc.

3. Performance Settings

This section determines whether the performance metrics of an app needs to be captured or not

	a. monitor

	
	default value: false

	if true, enables the monitoring of various performance parameters such as Memory, CPU, Network Activity, etc.

 RobusTest Runner Run Settings

RobusTest Runner Run Settings

A RobusTest Runner Run Setting is used while starting a Test Run Session using the RobusTest Runner.

The default runner run setting consists of the following groups of settings:

1. General Settings

2. Appium Settings

3. Notification Settings

4. Job Settings

5. Performance Settings

6. Uninstall Apps

1. General Settings

By default, the ‘General Settings’ section has the following parameters and values:

	a. reset

	
	default value: no

	ensures that the app is not reset

	b. uninstallAppAfterRun

	
	default value: yes

	this ensures that the app is uninstalled from the device at the end of the test session

	c. uninstallAppBeforeRun

	
	default value: yes

	this ensures that the app, if already installed, is uninstalled from the device at the beginning of a new test session

You can add/modify/delete other parameters to your run setting

2. Appium Settings

This section enables users to customise values for parameters to be passed to the Appium automation framework. This includes various Appium Desrired Capabilities such as ‘automationName’, ‘fullReset’, ‘noReset’, etc.

3. Notification Settings

This section enables users to send out notification emails, at the end of a test run, to a group of email IDs

For each ‘key’ in the setting, the user can enter one or more email IDs in the ‘Value’ field separated by commas.

There are 3 keys provided:

a. onComplete - An email notification is sent to the the email IDs on completion of a test run

b. onFail - An email notification is sent to the group of email IDs only if at least one test case, being executed as part of the run, has failed

c. onPass - An email notification is sent to the group of email IDs only if all test cases being executed as part of the run have passed

4. Job Settings

5. Performance Settings

This section determines whether the performance metrics of an app needs to be captured or not

	a. monitor

	
	default value: false

	if true, enables the monitoring of various performance parameters such as Memory, CPU, Network Activity, etc.

	b. saveData

	
	default value: false

	if true, enables the saving of various performance parameters on the RobusTest server

6. Uninstall Apps

 Using Device Groups to configure device selection for job creation API

Using Device Groups to configure device selection for job creation API

You can use the Groups feature to enable selection of devices from a specific set or sets of devices.

To be able to use this feature, you need to ensure there is at least one group created and your project and desired devices are part of that group.

Once you have one or more groups, you can use the deviceGroupsIDs attributes in the payload for job creation API and specify which groups should the devices be picked from. You can check the API details at http://api.robustest.com/#tag/job/paths/~1v3~1job~1new/post

deviceGroupsIDs is an array of strings.

Possible values for deviceGroupsIDs attribute are

	An array specifying one or more groupIDs - to direct the system to pick up devices only from the group(s) whose IDs have been provided in the array

	An array specifying the value [“any”] - to direct the system to pick up available devices from any of the groups that the project is part of

	An empty array - to direct the system to pick up any eligible and available device i.e. device could be part of a group or not

 Settings

Settings

You can configure various parameters related to how the RobusTest platform should fuction.

To know more click on each item below:

1. Notification Settings

2. Mail Settings

3. Network Shaping Settings

4. Neuron Settings

5. RobusTest Server Settings

6. Test Session Settings

7. Authentication Settings

8. Cloud Storage Settings

9. Espresso Settings

 Authentication Settings

Authentication Settings

A new user account can be created in RobusTest in 2 ways:
1. The RobusTest Admin creates the user account and activates it
2. The new user clicks on the ‘Create Account’, enters the information asked for (such as name, email ID, etc.), creates the account and the waits for the RobusTest Admin to activate the account

When a new user account is created on RobusTest, it is essential that she/he be authenticated.

RobusTest provides you a number of ways to authenticate a new or existing user on RobusTest

1. Enable email signup

	Enabling this option, allows a new user to register or sign up on RobusTest from the Login page by clicking on the ‘Create Account’ button.

	If this checkbox is not enabled, then the ‘Create Account’ button will not be visible on the RobusTest Login page. In such scenarios, the RobusTest Admin alone has the privilege to create an account on behalf of a new user.

2. Require email confirmation by user

	If this checkbox is not enabled, then, on signing up for a new account on RobusTest, the new user has to wait for the RobusTest Admin to enable the account

	If this checkbox is enabled, then, on signing up for a new account, the user receives an email in her/his inbox (i.e., the email id that was mentioned while creating the account). The user then clicks on the confirmation link in the email to authenticate their self.

3. Require user activation by administrator

	If this checkbox is enabled, then it is mandatory for the RobusTest Admin to activate a new user on the p[latform.

	If this checkbox is disabled, then the new user is automatically activated after the account is created.

4. Domains

	This option enables you to restrict registration of new users on RobusTest to specific domains.

	You can provide a list of domain names in a comma separated format

	E.g. robustes.com,gmail.com

5. Google Sign Up

	Enabling this option lets you sign in with your Google client credentials

	For this you also need to provide your Google Client ID and Google client secret

 Cloud Storage Settings

Cloud Storage Settings

Under construction

 Espresso Settings

Espresso Settings

Job retry timeout

For Espresso runs, the job is attempted for the time period mentioned here (in seconds). If the job does not begin within this period, it is terminated.

 Mail Settings

Mail Settings

RobusTest enables you to recieve email notifications for test run executions, device disconnecitons, node disconnections etc.

In order to send out emails, you must configuree the Mail settings in RobusTest.

RobusTest provides you a means to:

	input your email server details: This entails entering your email server hostname and port

	enable secure communication: Selecting the ‘SSL’ checkbox ensures that email communications are sent over the SMTPS protocol instead of SMTP

	provide authentication: You can use a username and password to enable communication with the email server

 Network Shaping Settings

Network Shaping Settings

Under Construction

 Neuron Settings

Neuron Settings

This page determines the Neuron configurations

under construction

 Notification Settings

Notification Settings

In this section, you can decide if a notification email should be sent out for the following events:

	Device Connections

	A notification email is sent out when a device is connected to the RobusTest device cloud

	Device Disconnections

	A notification email is sent out when a device that is connected to the RobusTest device cloud gets disconnected.

	A device may get disconnected for one of many reasons such as:

	the device going offline

	the device getting unauthorised

	the device goes into a hanging state

	the device having been physically removed from the RobusTest device cloud

	Node Connections

	A notification email is sent out when a new node is connected to the RobusTest device cloud.

	A node is a server machine on which the RobusTest platform is installed and run.

	Node Disconnections

	A notification email is sent out when a node server that is connected to the RobusTest device cloud gets disconnected.

	A node server may get disconnected for one of many reasons such as:

	issues with the LAN/network

	power issues in the server room

	software/hardware issue with the server machine

	disabling of the Remote Login/Remote Management option on the machine

	the node having been physically removed from the RobusTest device cloud

You can specify a time delay (in seconds) post the occurrence of an event, after which, the notification email should go out.

E.g. if the ‘Device Notification Delay’ has been set at 300 seconds, then, on the event of a device getting disconnected, a notification email is sent out after a period of 300 seconds.

Note: The notification email is sent only if the device remains discoonected through out the delay period

Device connection & disconnection emails will be sent to the email ids mentioned in the Contacts section of the device

Node connection & disconnection emails will be sent to the email ids mentioned in the Contacts section of the node

 RobusTest Server Settings

RobusTest Server Settings

This page determines the RobusTest Server configurations.

Here you provide the followng info:

1. Hostname: This is the IP or URL you use on a browser to access RobusTest

2. Port: This refers to the port on the above Hostname on which you can access RobusTest

3. Protocol: This can be http or https

4. Application Title:

 Test Session Settings

Test Session Settings

1. Idle time duration:

	If your manual or automation test session remains idle for the period of time (in seconds) specified in this field, then, a countdown timer of 10 minutes begins.

	If you resume your testing within these 10 minutes, the countdown timer is stopped.

	If the test session remains idle for 10 more minutes, the test session is terminated and the device being used in the test session is released.

2. Ping duration:

3. Close session forcefully:

 Setting Up RobusTest for HTTPs access

Setting Up RobusTest for HTTPs access

By default RobusTest is accessible using HTTP. However, it is very easy to configure RobusTest for HTTPs access. The only information required from the user are the following for the FQDN on which RobusTest is accessed e.g. If you access your device lab on devicelab.acme.com, then you need to provide

	Certificate file

	Private Key file

This needs to be provided to the RobusTest team to setup HTTPs based access.

 Swipe

Swipe

Recording a ‘Swipe’ action on RobusTest essentially consists of providing two parameters:

	the direction is which you want to swipe; and;

	the number of times you want to perform the swipe action

[image: _images/swipe.png]
RobusTest provides you two ways of recording a swipe action. These are:

	Swipe

	Swipe Till

Both the above options can be seen on the context menu that opens up on executing a left-click with your mouse on the device screen.

Let’s have a look at the difference between these two.

1. Swipe

This option allows you to record a swipe from any point on the page for the number of times that you specify. It is not dependent on any element present on the page. It just executes the ‘Swipe’ action.

a. Hover the mouse over *any element on the app screen so that it is highlighted by a rectangle.*

b. Left-click on the element and select the ‘Swipe’ option on the context menu.

c. Ensure that you have provided the correct values for ‘direction’ and ‘number of times to scroll’ on the pop-up window that opens up

d. Click on the ‘Save’ button. A swipe test step is now created

2. Swipe Till

You can use this option to scroll down until a specific element on the app page is arrived at.

a. Switch to Manual mode in the Automation test session

b. Manually scroll until you arrive at the element till which you would like to scroll

c. Switch back to Automation mode

d. Hover the mouse over the above element so that it is highlighted by a rectangle

e. Left-click on the element and select the ‘Swipe Till’ option on the context menu

f. Ensure that you have provided the correct values for ‘direction’ and ‘number of times to scroll’ on the pop-up window that opens up

g. Click on the ‘Save’ button. A swipe test step is now created

If the element specified is not present OR if it is not arrived at on the page within the number of scroll tries specified, then an error message is displayed.

 API to switch to specific SSID

API to switch to specific SSID

API Definiton

​HTTP Method: PUT

​
URL:

http://<RobusTest URL>/v3/testsession/<testsession_id>/changewifi?accesskey=<access key>

​
Payload:

{
 "ssid" : "<ssid value>",
 "password" : "<password value>"
}

​
Since Device ID needs to be provided as part of the API payload, you can find the device id through the following Java code

Bundle testBundle = InstrumentationRegistry.getArguments();
string deviceID = testBundle.getString("deviceID");

Sample API Invocation

HTTP Method: PUT

​
URL:

http://devicelab.robustest.com/v3/testsession/123SFSAD312313SDF/changewifi?accesskey=1234DFFGG24FDSD

​
Payload:

{
 "ssid" : "RobusTest_WiFi",
 "password" : "AlwaysKeepTesting"
}

 <no title>

 This is for testing purpose
Hello world!

 Test Data Collection: Report Portal

Test Data Collection: Report Portal

To push data to Report Portal, you have to create appropriate test data collection entries in your run setting.

For each artefact that you wish to push to Report Portal (e.g test results, logs, etc.), you need to create a separate test data collection.

Creating Test Data Collections

In the Test Data Collection section, you need to enter the following details:

	testDataCollections.integrationType

	In this field, enter the value reportPortal

	testDataCollections.integrationID

	In this field, enter the Integration ID of your Report Portal Integration entry from the Admin Console -> Integrations section

	testDataCollections.testDataPoint

	The value entered in this field determines the artefact that will be pushed to report Portal.

	You can enter one of the following values in this field:

1. stats

	This ensures that the results of your job run are pushed to Report Portal.

	This data includes:

	test case stats , i.e., number of passes, fails, errors, total count, pass percentage, etc.

	job related details, i.e., start time, emd time, duration, etc.

	list of test cases and their details, etc.

	It is mandatory to have one test data collection entry where the value is ‘stats’.

2. deviceLog

	This helps push the device logs for the devices used in your job to be pushed to Report Portal

3. result

	This pushes the framework log to Report Portal.

	By framework log, we are referring to the log generated by the automation framework that you use such as Espresso, Appium, XCUITest, etc.

4. screenshot

	This pushes all screenshots generated by your job to Report Portal.

 Test Step Details

Test Step Details

For any recorded test step, if you click on the ‘Show Step Details’ button, you can see that the test step expands to reveal the following tabs:

	Basic

	Settings

	User Data

	Return Data

	XPath

	Script

	References

	Dependencies

	Function Steps

These tabs provide you more information about and control over the automation test steps you have created. Let’s have a look at each of these tabs in detail.

1. Basic

This tab let’s you provide a name and a description for the test step that has been recorded.

Whenever you record a test step, by default, RobusTest provides you a test step name depending on the element and the action that was performed. Sometimes, this default test step may not be easy to understand. E.g. a step named ‘Tap on Relative Layout’.

In such cases, the user can go to the Test Step Name field under the ‘Basic’ tab and rename the step to something more intuitive and meaningful. E.g. ‘Tap on Play button icon’

2. Settings

For test steps that record a user action such as a tap, type, swipe, etc, the ‘Settings’ tab provides certain configurable paramters.

	onFail - This prameter determines what action should be performed at the end of execution of a test step.

This field can have the following values:

	Fail - This is the default value. If the test step is not executed successfully, the succeeding test steps are not executed and the test case is considered to have failed.

	Continue - In this case, even if the test step is not executed successfully, the succeeding test steps are still executed. and the test case is considered to have failed.

	waitforElement - This time parameter (in units of seconds) indicates the period of time RobusTest will wait to find the element on which an action has been recorded in the current test step. This value will override the default value set for automation at the platform level. You can modify this value to increase or decrease the time taken to find this element.

	failType -

	messageOnFail -

3. User Data

The data that you enter while recording a ‘Type’ test step is separated out from the script and displayed here. This enables you to change the data and execute the same test step without having to re-record the same.

More details on how to manipulate the user data is available in the data-parametrisation section

4. Return Data

In general, this tab provides info on the position of an element on the device screen. It provides you the top, bottom, left and right bounds as well as the length and width of the element.

If the element contains a ‘text’, the value of the text attribute is displayed.

The most important use of the return data section is in the case of a ‘Store’ and ‘Verify’ operation.

All details of the element stored are available on the Return Data tab. This data can then be used for verification purposes in a later test step. For more details please see the section on Verification

5. XPath

The xpath of the object or element on which an action was performed is visible on this tab.

The default Xpath created at the time of recording the test step is referred to as the ‘Original’ xpath.

On clicking on the ‘Add New Xpath’, you can modify the existing Xpath by either:

	adding more attributes to it (by selecting the checkbox next to the attribute being added); or

	editing the Xpath manually

On providing a new name and clicking on the ‘Save’ button, the modified Xpath is saved.

Let us have a look at the various operations you can now do on the Xpaths.

	‘Edit Xpath’ - This enables you to edit the Xpath selected in the Xpath drop down. The ‘Original’ Xpath can never be edited.

	‘Copy Xpath’ - This copies the selected Xpath to the clipboard for later use

	‘Delete Xpath’ - This enables you to delete the selected Xpath. The ‘Original’ Xpath can never be deleted.

	‘Make Default’ - This is a very interesting option. Let’s say, after recording an action on an element, you have edited the Xpath to make it uniquely identifiable. It is now highly desirable to use this unique Xpath to identify this element in each test step it is being used. You can ensure this by clicking on the ‘Make Default Xpath’ button. Thereafter, this element will be identified by the newly created unique Xpath.

6. Script

This tab shows the test script to be executed when the automated test step runs. The script is shown in a smart script editor. If the user wishes to add custom code to his/her test scripts, s/he can do that in this script editor. The editor also checks for syntax correctness.

7. References

Please refer to the section on data-parametrisation

8. Dependencies

Please refer to the section on data-parametrisation

9. Function Steps

This tab is visible only in a test step where a function is being executed. It provides you the following details:

	the name of the function being called

	the name of the test case that was converted into this function

	a list of the different test steps that will be executed as part of this function

 Troubleshooting your Espresso job

Troubleshooting your Espresso job

When running your Espresso tests on RobusTest, you may come across results or behavior which may not expected. Before you request for help from support, it would help you perform the following basic checks to ensure there any issues in your tests or test commands is ruled out.

Reproducing the issue

	Download your app build and the test binary from RobusTest

	Run the following commands and check if the output is matching your expectations

Following command lists all the test classes in your test package

adb shell am instrument -w -e log true -e class {test class name} {application package name/ID}/{test runner name}

Following command lists all the test methods in your test package

adb shell am instrument -w -r -e log true -e class {test class name} {application package name/ID}/{test runner name}

This will ensure that you know what classes and methods are being picked up by RobusTest when trying to run your Espresso job.

Sometimes devices are shown as green (free) on dashboard but still jobs show in queue. What could be the reason for this?

This may happen because of multiple reasons:

	When starting an Espresso job, in the API request, user has to specify if the devices should be picked up from general pool or from specific group. If user has selected to run from general pool, then even if devices from specific group are available, they will not be picked up for the run. And vice versa.

	This may also happen when the minimum number of devices requested is higher than the number of devices currently available in the general or specific pool as has been selected by the user.

	This may happen also in the period between the submission of the job and the picking up of the job by the RobusTest system. This duration is usually ranges between 2 to 3 minutes. However, do note that this is temporary and the devices will be reserved once the job is picked up by RobusTest.

If my job does not complete within a certain time, I would like it to be closed. How do I do that?

In case of CI based operations, it is important that a job does not remain in running or pending state forever, since critical code pushes and business decisions need to be made. Therefore when making a request to RobusTest, you can provide an attribute runTimeout. This value takes in the value in seconds. RobusTest uses the value of this attribute and compares it against the duration for which the job has been in the system. If the duration value exceeds the runTimeout then, the job is ended. Note that runTimeout should be used to specify the total time within which the job should be completed including the waiting and running times

Can I close a job after making a job request?

Yes, it is possible to close a job after making a job request. The key is to find out the job that you would want to close and sent a DELETE method to RobusTest Espresso API. In the API you can also provide a reason for closing the job to help create a record.

Usage
? reason=PR has been updated, therefore closing this job and starting a new on

 Setting Up Tunneling

Setting Up Tunneling

To configure tunneling for your tests in such a way that all requests from your test device go through a system/server that you have identified, you need to do the following

	Set the proxy on the mobile device on which you to run your tests

For iPhone, follow the steps below to set the proxy

	Open up Settings > Wifi

	Click on the blue arrow next to your wifi connection.

	Scroll to the bottom where there is a section for HTTP Proxy.

	Select Auto from this section.

	In the URL field enter the value

http://{RobusTest_URL}/tunnelConf

	Download the tunneling client from the device lab using the following URL

Linux

{Device Lab URL}/download/file/robustest_tunnel_linux_amd64

MacOS

{Device Lab URL}/download/file/robustest_tunnel_mac

Windows

{Device Lab URL}/download/file/robustest_tunnel_window_386.exe

	On the machine from which you want all requests to pass through, run the following command

{tunnel client filename} connect –key <key unique to the client> –nerve {RobusTest_URL} –accessKey {User Access Key}

Make sure you note down the unique key, this key will need to be passed on when running your tests

	If running Appium tests, pass the value of the unique key as robustest.tunnelKey

	Ensure that the following port policies are allowed

	Requests from the machine where the tunnel client is running to the tunnel server on ports 3000 to 5000

	Requests from the mobile device to the tunnel server on port 1080

	Requests from the device lab to the tunnel server on port 9321

 Typing text

Typing text

In order to enter text into a text field you need to do as follows:

	Hover the mouse over the text field until that element is highlighted.

	In case you are not sure that the right elemdnt is being highlighted, use the ‘Find Concurrent Elements’ option to identify the right element.

	Perform a left-click action while the element is highlighted.

	On the menu that opens up, click on the option ‘Type’. An ‘Enter Text’ window now pops up.

	On the ‘Enter Text’ window, you can do the following:

	Type the text value you would like to enter into the ‘Input Text’ field.

[image: _images/entertext1.png]

	Select the method by which you would lke to enter text from the drop down named ‘Enter text using’.

RobusTest provides you multiple methods of entering text into a text field. Let’s have a look at these methods:

	Entering text using RobusTest - This is the default method by which text is entered. It is a custom method built by the RobusTest team.

	Entering text using the Automation framework - This method enables you to enter text using the functions available in the underlying Automation framework. E.g. using the method available on the Appium framework to enter text.

	Entering text using Android Device Bridge - This method uses ADB to enter text into the text field,

[image: _images/entertext2.png]

	Choose whether to hide the device keyboard or not by selecting/unselecting the checkbox named ‘Hide keyboard after entering text’.

[image: _images/entertext3.png]

	Click on the ‘Save’ button.

The input text will now be entered into the input field.

_images/importfunction3.png
40 b@E@EQ - G =

Your Location

L I
O OB 4AOQB+ =R

Test Step

o]
v
-
<

= 1 @ Tap on text "Explore Bangalore Store”

Place your first order no

0]
v
-
<

Save up 1031000
onyour monthly grocery

i!\ o S0% 0 b0 50% or
. P The Healthy Bite i

B 8 Q @]

Home Categories Search Offers. Basket

_static/performance_image.png
ndd

- .

Kowapy

H

2504 &

H

T T T T T B
13 13:1020 13:1030 13008 131050 131100 o

9 CPU - Total I CPU - User I CPU - Kernel I PSS Total M Private Dirty
rivate Clean Swapped Dirty [Heap Size [l Heap Alloc ' Heap Free
I Received WMl Transferred 10 Activity

Network Usage - @62408kb & 12085kb

_static/pausetestexecution3.png
Sign in to your account

View your wish list
Find & reorder past purchases

Track your purchases

New to Amazon.in? Create an account

Skip signin

TestStep

Pause test execution for 2 seconds.

®

_images/liveviewsessions.png
S - ONONE - 3¢

Q search Live Sessions

Label Device User ADB ID/UDID Type Started Actions

1 bigbasket v4.7.3 #1716548 Moto G (5) Plus suraj@robustest.com 2Y2242NJ3T Automation Test Session 11/07/2019, 141517 [} »

2 bigbasket v4.7.3 #1716548 Nexus 5X suraj@robustest.com 02040606117c430f Manual Test Session 11/07/2019, 1424:44 (=) »>

_static/projectdashboard.png
INFORMATION ~ TEAM

a
l'l

Amazon
Shopping

ADDBUILD ~ UPLOAD BUILD - REMOTE SETTINGS

Start by uploading your app

™ X ©

m o &« O0O%

_images/liveview1.png
T OO R > 3O

Location

Rd-Koramangala, Bang.

India’s largest online supermarket

The [assurance
@ Choose from 40,000+ products
& Quality you can trust
@ No questions asked return policy
@ On-time delivery

Place your
First Order
and get
3200 cashback

B 88 Q @

Home Search Offers Basket

Categories

Test Gase : Search for wheat
App : Big Basket

o #

© o
2

€} o
o
] e
e .
a 4

Device : Moto G (5) Plus v 8.1.0
Node :192.168.0.145

serial Step Name

1 Start Test

2 start App

3 ‘Tap on 'Explore Bangalore Store'
1 ‘Tap on 'Search’

5 ‘Type search item

6 Hit Enter

_static/plus.png

_images/manualtestheader.png
Running eBay on Lenovo AS36 nn“ﬂn ocmmmg o (ru

_static/projectdashboard3.png
BUILDS TEAM UPLOAD BUILD -

REMOTE SETTINGS

+ & B

Vodafone Callertunes v 3.1.7.5 # 215 v UMB C] .
21

Vodafone Caller Tunes Build Name rsion Code.

x;
br.com.vor

ain ringbacktones

Launch Acton
‘com.onmobile.rbt baseline activities SplashActivity

T X < -

Manual ~ Automation TestScripts Test Suites

@ o« [

TestRuns RunSettings Device queries

Hub

_images/managepermissionalerts.png
Manage Android Permission Alerts

‘Permission Handling
Auto - Allow All Alerts|

Auto - Allow All Alerts
Auto - Deny All Alerts

Handle in test case

_static/projectdashboard2.png
2
Amazon
Shopping

INFORMATION ~ TEAM ADD BUILD

Build
‘Amazon Shopping v18.3.0.300 #1241154010

UPLOAD BUILD - REMOTE

Description

SETTINGS

SELECTED BUILD URL [l DELETE SELECTED BUILD

led by

Suraj Nair

Build Name
Amazon Shopping

in.amazon mShop.android.shopping

on

02/2019, 13:09:07

0

Version Name

18.3.0.300 1241154010

Launch Action
com.amazon.mShop android home HomeActivi

™ X

<>

o & O

_images/navigation_menu_on_device_1.png
amazon
N—

Sign in to your account
View your wish list
Find & reorder past purchases

Track your purchases

New to Amazon.in? Create an account

Skip signin

Hide navigation menu "]

wQ0e

-s«———— Device Navigation Menu

O OB A QB+ o L e

TestStep

@

_static/recording.png
Running eBay on Asus Zenfone 5 AS00CG H m Selected Object : TextView Re... m

7 W 7:24 PM
Sae Stop Name ooree

carch ey)

[e
L i
=]

CASH

Sell o fiial

Snap photos of your item from
your mobile device to share it with
millons of buyers.

(oo e

_images/manualtesting.png
Running eBay on Lenovo AS36

omms o B-EE

Black Friday Rush- Call it in

dedeept

523 folls Follow Share
Deal 18: New. Pebble Smart.
Rs.16,869 Rs.6,556

Zoom 1min 2min

nd>

hsowamw

19:17:30 19:19:40 0:00

syomian

W9 CPU - Total I CPU - User I CPU - Kernel
5 Total Ml Private Dirty rivate Clean
wapped Dirty Bl Heap Size Il Heap Alloc
7 Heap Free [Received Ml Transferred W Activity

Network Usage- @50KB & 13KB

_images/pause_resume_button_1.png
3 @0 @ 1025

amazon
N

Sign in to your account
View your wish list
Find & reorder past purchases

Track your purchases

New to Amazon.in? Create an account

Skip signin

O OB 4O QB+ o L e

TestStep

@

_static/recording_main.png
B curowors] = [2 [s s

#(12] 01:45 Status Step Name Action
v @
v @
Before you place your order v ie

Please provide following information
v @
v @

|

f v @
v | Tap on Textview "suY NOW" e

the | on
v | Tap on Textview “Change® e

RobusTest. w027

_images/navigation_menu_on_device_2.png
amazon
N—

Sign in to your account
View your wish list
Find & reorder past purchases

Track your purchases

New to Amazon.in? Create an account

Skip sign in

II@Q | BCUNN @ Untitled Te:

gkl B 9] O OB AOQEB+ L e =
& # Test Step

(i]

[}

3

o

S

On clicking on the button, the navigation menu is no longer
visible

@

_static/recording_header.png
[] = T] na et Sossion

_images/importfunction2.png
Import Function

Search Test scripts

Function Name

o [ee-]

d select the function to be im|

_images/importfunction1.png
/W @D@Y O -

Your Location

100 Feet Rd-Koramangala, Bang,

Save big
Place your first order no

Save up 1031000
onyour monthly grocery

Crarming Yow
seRrunss | 0gas
‘ Upto 50% off
T -~
ks for [B1STaI mombers
B 8 Q @]
Home Cotegories Search Offers Basket

Test Step

Tap on text "Explore Bangalore Store"

_static/pausetestexecution2.png
Pause Test Execution

Pause Duration (in secs) seconds here

_static/manualtesting.png
Running eBay on Lenovo AS36

omms o B-EE

Black Friday Rush- Call it in

dedeept

523 folls Follow Share
Deal 18: New. Pebble Smart.
Rs.16,869 Rs.6,556

Zoom 1min 2min

nd>

hsowamw

19:17:30 19:19:40 0:00

syomian

W9 CPU - Total I CPU - User I CPU - Kernel
5 Total Ml Private Dirty rivate Clean
wapped Dirty Bl Heap Size Il Heap Alloc
7 Heap Free [Received Ml Transferred W Activity

Network Usage- @50KB & 13KB

_images/entertext2.png
Enter text

Input text

Enter textusina

RobusTest (default)

Automation Framework

Android Debug Bridge(ADB)
T ———AYECIOSE

_images/entertext1.png
Enter text

Input text

Enter text using

RobusTest (default)

Hide Keyboard after entering text

_static/minus.png

_images/executedbquery.png
Execute DB Query

Provider
Oracle

Connection String

‘username/password@db_hostport/db_name

Query

Result Row #

SAVE

CLOSE

_static/navigation_menu_on_device_2.png
amazon
N—

Sign in to your account
View your wish list
Find & reorder past purchases

Track your purchases

New to Amazon.in? Create an account

Skip sign in

II@Q | BCUNN @ Untitled Te:

gkl B 9] O OB AOQEB+ L e =
& # Test Step

(i]

[}

3

o

S

On clicking on the button, the navigation menu is no longer
visible

@

_images/entertext3.png
Enter text

Input text

Enter text using

RobusTest (default)

_static/navigation_menu_on_device_1.png
amazon
N—

Sign in to your account
View your wish list
Find & reorder past purchases

Track your purchases

New to Amazon.in? Create an account

Skip signin

Hide navigation menu "]

wQ0e

-s«———— Device Navigation Menu

O OB A QB+ o L e

TestStep

@

_images/hidekeyboard.png
mE0O0S 3 W0 @59 H=amQq

— amazonin \Yy O W B ¢ OB AOCYOEB + @ L &
m Hide Keyboard
o
()
3
]

| <«——————— Device Keyboard

_static/pause_resume_button_2.png
_ nom

O OB A QOB+ 0L ec=EBR

amazon ¢ ©°°
N (=]
Sign in to your account ;:;

View your wish list
Find & reorder past purchases

Track your purchases

New to Amazon.in? Create an account

Skip signin

_images/executerestapi.png
Execute REST API

Request Type

Timeout

SAVE CLOSE

_static/pause_resume_button_1.png
3 @0 @ 1025

amazon
N

Sign in to your account
View your wish list
Find & reorder past purchases

Track your purchases

New to Amazon.in? Create an account

Skip signin

O OB 4O QB+ o L e

TestStep

@

_images/hidekeyboard2.png
(A4

UP TO *175 BAC
food orders

AmazonPay Scan Recharges Pay Bills

(Jr=nz @ auiztime

erand win a

Saregama Carvaan*

Today's Deals

a 1201

Offers

N om

O OB A QB+ =R

o+ TestStep

Hide Keyboard if open

1. Hide keyboard test step is recorded
2. Device keyboard is hidden

_static/pausetestexecution1.png
amazon
N

Sign in to your account
View your wish list
Find & reorder past purchases

Track your purchases

New to Amazon.in? Create an account

Skip signin

O OB A O QB+ @ &

Pause Test Execution
oot

ep

_images/hidekeyboard1.png
mE0O0S 3 W0 @59 H=amQq

— amazonin \Yy O W B ¢ OB AOCYOEB + @ L &
m Hide Keyboard
o
()
3
]

| <«——————— Device Keyboard

_static/pause_resume_button_3.png
amazon
N

Sign in to your account
View your wish list
Find & reorder past purchases

Track your purchases

New to Amazon.in? Create an account

Skip signin

Qe =

O OB 4O QB+ @ &

TestStep

@

_images/deviceselection.png
Search Device

Nexus 5

© v6.01
© 495in
© 1080x 1920
© 268
© ammeabi-v7a

00000

XT1033

v5.1
45in
720x1280
168
ameabi-v7a

HTC One X

© w22
© 47in
© 720x 1280
o168
© ammeabi-v7a

00000

Lenovo A328

va42
45in

480 x 854
168
ameabi-v7a

00000

HTC One mini

vaa2
43in

720 x 1280
168
armeabi-vza

_static/manualtestheader.png
Running eBay on Lenovo AS36 nn“ﬂn ocmmmg o (ru

_images/devicescreensize.png
EmEBOO® 3@ Q334

amazon ° ”
N]

S

Sign in to your account [11.]
View your wish list & 1. Increase device screen size
Find & reorder past purchases 2. Reset device screen size to default size
Track your purchases 3. Decrease device screen size

New to Amazon.in? Create an account

Skip sign in

_static/managetestcases.png
2 8 g

10 e

Q-Q_

LA (=@ 4
o ¢
O 1 A4 Tsponten'oow

© 9 @

TestStep

+ ® v o«

[]

_images/dilbert_troubleshooting.png
T™ HITTING A 2| SHOULD I GIVE UP AND MY DADDY USED TO
SNAG WITH THIS RFP ACCEPT FATILURE OR LIE SAY IT ISNT A PROBLEM
ABOUT OUR FEATURES IF YOU CAN GIVE T
DO WHAT THEY AND TRANSFER THE TO SOMEONE ELSE.
NEED. PROBLEM TO THEM?
THEN HE DROVE

YOU TO SCHOOL?

_images/resetappandcleardata.png
Sign in to your account
View your wish list
Find & reorder past purchases

Track your purchases

New to Amazon.in? Create an account

Skip signin

wQ0e

Reset App & User Data
eststep

@@BI,<>9+C—D¢<—'

_static/storedeviceinformation1.png
EmEBOO® 3@ Q338

amazon
N

Sign in to your account
View your wish list
Find & reorder past purchases

Track your purchases

New to Amazon.in? Create an account

Skip sign in

n = QU
@3»“\.!9

Q =m

N om
O OB A QB+ =R

Information

Test Step
[} [m] Store Device Information
3

RS

_static/signup.png
Sign Up

Julia Roberts

julia@roberts.com

[——

Already have an account ? Sign In

ign Up is allowed only with a business email address. Your email
‘address will be safe with us. Upon sign up, 60 minutes of device usage
are automatically credited in your account. Your credits wil be subject to
the overall organization credit limit which is 150 minutes by defaut

_images/sendapptobackground1.png
Sign in to your account
View your wish list
Find & reorder past purchases

Track your purchases

New to Amazon.in? Create an account

Skip signin

g

nd App to Background

TestStep

_static/swipe.png
Swipe

‘Number of times to scroll

5

Direction of scroll

Up

SAVE CLOSE

_images/robustestsupport.png
RobusTest Support

Solutions Tickets

Submit a ticket

Requester * suraj@robustest.com

Subject *

RobusTest URL on
‘which issue
happened

Description * B IU a oo & x

+ Attach a file

Ll Cancel

_static/storedeviceinformation2.png
EmMEBOO® 3 @ 0339

TestStep

amazon
N

= [J 1 @ storeDevice Information

PR BASIC SETTINGS USER DATA XPATH SCRIPT ~REFERENCES DEPENDENCIES
Sign in to your account [11.]
View your wish list [

Value

Find & reorder past purchases _id 5be3bef8e4eblab97e3064e5

Track your purchases

agent

tate 0

Value

New to Amazon.in? Create an account) .

automate true
Skip sign in -

_images/sendinstructiontodevice.png
EmEBOO0® 3 @ 0 405 % om

amazon
N

S
Sign in to your account [11.]
View your wish list o

Find & reorder past purchases

Track your purchases

New to Amazon.in? Create an account

Skip sign in

_static/teststep1.png
Test Step

@ Tapon text "LOGIN"

@ Tapontext field "text_input_email_login"

@ Type in text field "user@robustest.com”

_images/sendapptobackground2.png
Send App to Background

Resume mobile app

_static/testgroup.png
movie @payment
Feature: sample karate api test script
for help, see: https://github.com/intuit/karate/wiki/ZIP-Release

Background:
* url 'https://jsonplaceholder.typicode.com/sfsdfsd"’

Scenario: get all users and then get the first user by id
Given path 'users'
When method get
Then status 200

* def first = response[0]

Given path 'users', first.id
When method get
Then status 200

Scenario: get all todos and then get the first todo item by id
Given path 'todos'
When method get
Then status 200

* def first = response[0]

Given path 'todos', first.id
When method get
Then status 200

_images/storedeviceinformation1.png
EmEBOO® 3@ Q338

amazon
N

Sign in to your account
View your wish list
Find & reorder past purchases

Track your purchases

New to Amazon.in? Create an account

Skip sign in

n = QU
@3»“\.!9

Q =m

N om
O OB A QB+ =R

Information

Test Step
[} [m] Store Device Information
3

RS

_static/teststep3.png
Test Step
= 1 @& Tapontext"LOGIN" a »
= 2 @ Tapontextfield "text_input_email_login" a » @
Type in text field "user@robustest com" a » 3

_images/signup.png
Sign Up

Julia Roberts

julia@roberts.com

[——

Already have an account ? Sign In

ign Up is allowed only with a business email address. Your email
‘address will be safe with us. Upon sign up, 60 minutes of device usage
are automatically credited in your account. Your credits wil be subject to
the overall organization credit limit which is 150 minutes by defaut

_static/teststep2.png
1 @& Tapon text "LOGIN"

_images/swipe.png
Swipe

‘Number of times to scroll

5

Direction of scroll

Up

SAVE CLOSE

_static/teststep5.png
1

2

3

o

o

TestStep

Tap on text "LOGIN"

‘Tap ontext field "text_input_emai_login®

Type in text field "user@robustest.com”

_images/storedeviceinformation2.png
EmMEBOO® 3 @ 0339

TestStep

amazon
N

= [J 1 @ storeDevice Information

PR BASIC SETTINGS USER DATA XPATH SCRIPT ~REFERENCES DEPENDENCIES
Sign in to your account [11.]
View your wish list [

Value

Find & reorder past purchases _id 5be3bef8e4eblab97e3064e5

Track your purchases

agent

tate 0

Value

New to Amazon.in? Create an account) .

automate true
Skip sign in -

_static/teststep4.png
i Test Step

(m]
O ! © Tapontenioon

[Elo @ © oo iopucnaiionm a

3 @ Typeintexfeld ‘wsergrabustestcom

_images/testgroup.png
movie @payment
Feature: sample karate api test script
for help, see: https://github.com/intuit/karate/wiki/ZIP-Release

Background:
* url 'https://jsonplaceholder.typicode.com/sfsdfsd"’

Scenario: get all users and then get the first user by id
Given path 'users'
When method get
Then status 200

* def first = response[0]

Given path 'users', first.id
When method get
Then status 200

Scenario: get all todos and then get the first todo item by id
Given path 'todos'
When method get
Then status 200

* def first = response[0]

Given path 'todos', first.id
When method get
Then status 200

_static/resetappandcleardata.png
Sign in to your account
View your wish list
Find & reorder past purchases

Track your purchases

New to Amazon.in? Create an account

Skip signin

wQ0e

Reset App & User Data
eststep

@@BI,<>9+C—D¢<—'

_images/pausetestexecution1.png
amazon
N

Sign in to your account
View your wish list
Find & reorder past purchases

Track your purchases

New to Amazon.in? Create an account

Skip signin

O OB A O QB+ @ &

Pause Test Execution
oot

ep

_static/robustest20_signin.png
RODUSTEST

One Click Automation

Password

Log onto RobusTest

Create Account | Forgot password

- R
E Sign in with Google

_images/pause_resume_button_3.png
amazon
N

Sign in to your account
View your wish list
Find & reorder past purchases

Track your purchases

New to Amazon.in? Create an account

Skip signin

Qe =

O OB 4O QB+ @ &

TestStep

@

_static/robustest20_forgotpassword.png
)) R0DUSTEST

Automat

Email

Back to Login Page

_images/pausetestexecution3.png
Sign in to your account

View your wish list
Find & reorder past purchases

Track your purchases

New to Amazon.in? Create an account

Skip signin

TestStep

Pause test execution for 2 seconds.

®

_static/robustestsupport.png
RobusTest Support

Solutions Tickets

Submit a ticket

Requester * suraj@robustest.com

Subject *

RobusTest URL on
‘which issue
happened

Description * B IU a oo & x

+ Attach a file

Ll Cancel

_images/pausetestexecution2.png
Pause Test Execution

Pause Duration (in secs) seconds here

_static/robustest20_signup.png
RODUSTEST

One Click Automation

Password

Re-type Password

Back to Login page.

- R
E Sign in with Google

_images/projectdashboard.png
INFORMATION ~ TEAM

a
l'l

Amazon
Shopping

ADDBUILD ~ UPLOAD BUILD - REMOTE SETTINGS

Start by uploading your app

™ X ©

m o &« O0O%

_static/sendapptobackground2.png
Send App to Background

Resume mobile app

_images/performance_image.png
ndd

- .

Kowapy

H

2504 &

H

T T T T T B
13 13:1020 13:1030 13008 131050 131100 o

9 CPU - Total I CPU - User I CPU - Kernel I PSS Total M Private Dirty
rivate Clean Swapped Dirty [Heap Size [l Heap Alloc ' Heap Free
I Received WMl Transferred 10 Activity

Network Usage - @62408kb & 12085kb

_static/sendapptobackground1.png
Sign in to your account
View your wish list
Find & reorder past purchases

Track your purchases

New to Amazon.in? Create an account

Skip signin

g

nd App to Background

TestStep

_images/projectdashboard3.png
BUILDS TEAM UPLOAD BUILD -

REMOTE SETTINGS

+ & B

Vodafone Callertunes v 3.1.7.5 # 215 v UMB C] .
21

Vodafone Caller Tunes Build Name rsion Code.

x;
br.com.vor

ain ringbacktones

Launch Acton
‘com.onmobile.rbt baseline activities SplashActivity

T X < -

Manual ~ Automation TestScripts Test Suites

@ o« [

TestRuns RunSettings Device queries

Hub

_static/sendapptobackground4.png
Sign in to your account
View your wish list
Find & reorder past purchases

Track your purchases

New to Amazon.in? Create an account

Skip signin

TestStep

Send app to background for 10 seconds

O OB 4O QB+ @ &

®

_images/projectdashboard2.png
2
Amazon
Shopping

INFORMATION ~ TEAM ADD BUILD

Build
‘Amazon Shopping v18.3.0.300 #1241154010

UPLOAD BUILD - REMOTE

Description

SETTINGS

SELECTED BUILD URL [l DELETE SELECTED BUILD

led by

Suraj Nair

Build Name
Amazon Shopping

in.amazon mShop.android.shopping

on

02/2019, 13:09:07

0

Version Name

18.3.0.300 1241154010

Launch Action
com.amazon.mShop android home HomeActivi

™ X

<>

o & O

_static/sendapptobackground3.png
a 1215

O OB 4O QB+ @ &

in
o+ Test Step
(] = 1 . Sendapptobackground for 10 seconds B »
3
o

oo
20

Google

_images/recording_main.png
B curowors] = [2 [s s

#(12] 01:45 Status Step Name Action
v @
v @
Before you place your order v ie

Please provide following information
v @
v @

|

f v @
v | Tap on Textview "suY NOW" e

the | on
v | Tap on Textview “Change® e

RobusTest. w027

_images/recording_header.png
[] = T] na et Sossion

_static/sendinstructiontodevice.png
EmEBOO0® 3 @ 0 405 % om

amazon
N

S
Sign in to your account [11.]
View your wish list o

Find & reorder past purchases

Track your purchases

New to Amazon.in? Create an account

Skip sign in

_images/pause_resume_button_2.png
_ nom

O OB A QOB+ 0L ec=EBR

amazon ¢ ©°°
N (=]
Sign in to your account ;:;

View your wish list
Find & reorder past purchases

Track your purchases

New to Amazon.in? Create an account

Skip signin

_static/createproject.png
Create New Project

Project Name

First letter should be letter

Project Description

Project Type

CREATE PROJECT

_static/createfunction2.png
Add Function to testscript

Function Name

Category
None

_static/deviceselection.png
Search Device

Nexus 5

© v6.01
© 495in
© 1080x 1920
© 268
© ammeabi-v7a

00000

XT1033

v5.1
45in
720x1280
168
ameabi-v7a

HTC One X

© w22
© 47in
© 720x 1280
o168
© ammeabi-v7a

00000

Lenovo A328

va42
45in

480 x 854
168
ameabi-v7a

00000

HTC One mini

vaa2
43in

720 x 1280
168
armeabi-vza

_static/devicescreensize.png
EmEBOO® 3@ Q334

amazon ° ”
N]

S

Sign in to your account [11.]
View your wish list & 1. Increase device screen size
Find & reorder past purchases 2. Reset device screen size to default size
Track your purchases 3. Decrease device screen size

New to Amazon.in? Create an account

Skip sign in

_static/dilbert_troubleshooting.png
T™ HITTING A 2| SHOULD I GIVE UP AND MY DADDY USED TO
SNAG WITH THIS RFP ACCEPT FATILURE OR LIE SAY IT ISNT A PROBLEM
ABOUT OUR FEATURES IF YOU CAN GIVE T
DO WHAT THEY AND TRANSFER THE TO SOMEONE ELSE.
NEED. PROBLEM TO THEM?
THEN HE DROVE

YOU TO SCHOOL?

_static/dilbert.png
S ORRLE R
HAVE ALL THE DOCUMEN-
TATION (JRITTEN BY
SN O R
SRR TE sl R GO
ARG LR

J

HOW CAN I WRITE
INSTRUCTIONS FOR
SOMETHING THAT
DOESN'T EXIST YETT

“IF YOU PRESS ANY
KEY YOUR COMPUTER
GILL LOCK UP. 1F YOU
CALL OUR TECH SUPPORT
WE'LL BLAME ‘MICRO-
SOFT. "

_static/comment.png

_static/comment-close.png

_static/configuredevicenetwork2.png
Configure Device Network

No Connection
Airplane Mode
Wifi Only
Data Only

All Network On

_static/configuredevicenetwork1.png
230 b @O

G = Q@ m @ [JEEEr L~ |

O®a<>g+c-:¢<_-
o+ TeSTSteD

Welcome to bigbasket

Product catalogue and offers are location specific

CHOOSE LOCATION

Existing customer?

LOGIN ‘

Explore Bangalore Store

_static/createfunction1.png
Serial Test Case Name Created By Updated By Last Edited Actions
1 Search for wheat Suraj Nair 1/07/2019,153018

2 Test function Suraj Nair 10/07/2019, 131004

_static/buildURL.png
Build Url © hitpi//10.12.25.162:8082/build/566170ce1466134d97ai5bd3.apk

Description + Provide description

O <> W ®© =

Manual Record Test Cases Test Suites Reports

_static/changeorientation1.png
EmMEBOO® 3@ 0 342

amazon
N

Sign in to your account
View your wish list
Find & reorder past purchases

Track your purchases

New to Amazon.in? Create an account

Skip sign in

O OB A QB+ o L e

TestStep

_static/capturedevicescreen1.png
1254 b @ O

Welcome to bigbasket

Product catalogue and offers are location specific

CHOOSE LOCATION

Existing customer?

‘ LOGIN ‘

Explore Bangalore Store

Gapture device screen
ESUSteD.

Capture device screen

O®4<>9+c—3¢<—l

_static/comment-bright.png

_static/changeorientation2.png
Change Device Orientation

_static/Verifyelementexists5.png
Create Verification

Source

Invert Verification Result

_static/Verifyelementexists4.png
Profile Tunes Name{

Categories

_static/adminserver.png
(robustest_Trontend_virtual)robustest@robustest-rrontend:/opt/code/piservery pytnon run.py

INFO in run [run.py:20]
starting server

* Running on http://0.0.0.0:8082/
* Restarting with stat

INFO in run [run.py:20]
starting server

FAILED to start flash policy server: [Errno 98] Address already in use: ('0.0.0.0'

10843)

_static/adminconsole.png
3
€ z0usTCST g A suraniaR

_static/ajax-loader.gif

_images/changeorientation1.png
EmMEBOO® 3@ 0 342

amazon
N

Sign in to your account
View your wish list
Find & reorder past purchases

Track your purchases

New to Amazon.in? Create an account

Skip sign in

O OB A QB+ o L e

TestStep

_static/livesessions1.png
<> i @_)) O * Jr SURAJ NAIR

Q Search Live Sessions

Label Device User ADB ID/UDID Type Started Actions

1 bigbasket v4.7.3 #1716548 Moto G (5) Plus suraj@robustest.com 2Y2242NJ3T Automation Test Session 11/07/2019, 09:50:12 [} »

2 bigbasket v4.7.3 #1716548 Nexus 5X suraj@robustest.com 02040606117c430f Test Run Session 11/07/2019, 09:55:39 [}

_static/importfunction3.png
40 b@E@EQ - G =

Your Location

L I
O OB 4AOQB+ =R

Test Step

o]
v
-
<

= 1 @ Tap on text "Explore Bangalore Store”

Place your first order no

0]
v
-
<

Save up 1031000
onyour monthly grocery

i!\ o S0% 0 b0 50% or
. P The Healthy Bite i

B 8 Q @]

Home Categories Search Offers. Basket

_images/configuredevicenetwork1.png
230 b @O

G = Q@ m @ [JEEEr L~ |

O®a<>g+c-:¢<_-
o+ TeSTSteD

Welcome to bigbasket

Product catalogue and offers are location specific

CHOOSE LOCATION

Existing customer?

LOGIN ‘

Explore Bangalore Store

_static/liveview1.png
T OO R > 3O

Location

Rd-Koramangala, Bang.

India’s largest online supermarket

The [assurance
@ Choose from 40,000+ products
& Quality you can trust
@ No questions asked return policy
@ On-time delivery

Place your
First Order
and get
3200 cashback

B 88 Q @

Home Search Offers Basket

Categories

Test Gase : Search for wheat
App : Big Basket

o #

© o
2

€} o
o
] e
e .
a 4

Device : Moto G (5) Plus v 8.1.0
Node :192.168.0.145

serial Step Name

1 Start Test

2 start App

3 ‘Tap on 'Explore Bangalore Store'
1 ‘Tap on 'Search’

5 ‘Type search item

6 Hit Enter

_images/changeorientation2.png
Change Device Orientation

_static/liveview.png
Search

Label

1 AJIO New Build on 30th Nov 2016 v2.4 #76
‘Search with four products - (AJIO New Build on 30th Nov 2016 v2.¢ #76)

‘Search with four products - (AJIO New Build on 30th Nov 2016 v2.¢ #76)

Device user
Nexus 5 You
HTCOnemini You
XT1033 You

ADB Serial
0713619713ccadcl
HT37NWA03682
TAG34020ML

Type
Manual
Test Aun
Test Aun

Started
4mins ago
2mins ago

aminute ago

Action

»

_images/createfunction1.png
Serial Test Case Name Created By Updated By Last Edited Actions
1 Search for wheat Suraj Nair 1/07/2019,153018

2 Test function Suraj Nair 10/07/2019, 131004

_static/liveviewsessions.png
S - ONONE - 3¢

Q search Live Sessions

Label Device User ADB ID/UDID Type Started Actions

1 bigbasket v4.7.3 #1716548 Moto G (5) Plus suraj@robustest.com 2Y2242NJ3T Automation Test Session 11/07/2019, 141517 [} »

2 bigbasket v4.7.3 #1716548 Nexus 5X suraj@robustest.com 02040606117c430f Manual Test Session 11/07/2019, 1424:44 (=) »>

_images/configuredevicenetwork2.png
Configure Device Network

No Connection
Airplane Mode
Wifi Only
Data Only

All Network On

_static/liveview2.png
Tost Steps.

AJIO

EN HOME

INTERNATIONAL BRANDS

VES

WESTERN WE/

INNERWEAR

ACCESSORIES

FOOTWEAR

ouILEl

_images/createproject.png
Create New Project

Project Name

First letter should be letter

Project Description

Project Type

CREATE PROJECT

_static/managepermissionalerts.png
Manage Android Permission Alerts

‘Permission Handling
Auto - Allow All Alerts|

Auto - Allow All Alerts
Auto - Deny All Alerts

Handle in test case

_images/createfunction2.png
Add Function to testscript

Function Name

Category
None

_static/logo.png
[75
-7

_images/adminserver.png
(robustest_Trontend_virtual)robustest@robustest-rrontend:/opt/code/piservery pytnon run.py

INFO in run [run.py:20]
starting server

* Running on http://0.0.0.0:8082/
* Restarting with stat

INFO in run [run.py:20]
starting server

FAILED to start flash policy server: [Errno 98] Address already in use: ('0.0.0.0'

10843)

_static/importfunction1.png
/W @D@Y O -

Your Location

100 Feet Rd-Koramangala, Bang,

Save big
Place your first order no

Save up 1031000
onyour monthly grocery

Crarming Yow
seRrunss | 0gas
‘ Upto 50% off
T -~
ks for [B1STaI mombers
B 8 Q @]
Home Cotegories Search Offers Basket

Test Step

Tap on text "Explore Bangalore Store"

_images/adminconsole.png
3
€ z0usTCST g A suraniaR

_static/hidekeyboard2.png
(A4

UP TO *175 BAC
food orders

AmazonPay Scan Recharges Pay Bills

(Jr=nz @ auiztime

erand win a

Saregama Carvaan*

Today's Deals

a 1201

Offers

N om

O OB A QB+ =R

o+ TestStep

Hide Keyboard if open

1. Hide keyboard test step is recorded
2. Device keyboard is hidden

_images/capturedevicescreen1.png
1254 b @ O

Welcome to bigbasket

Product catalogue and offers are location specific

CHOOSE LOCATION

Existing customer?

‘ LOGIN ‘

Explore Bangalore Store

Gapture device screen
ESUSteD.

Capture device screen

O®4<>9+c—3¢<—l

_images/buildURL.png
Build Url © hitpi//10.12.25.162:8082/build/566170ce1466134d97ai5bd3.apk

Description + Provide description

O <> W ®© =

Manual Record Test Cases Test Suites Reports

_static/importfunction2.png
Import Function

Search Test scripts

Function Name

o [ee-]

d select the function to be im|

_static/entertext3.png
Enter text

Input text

Enter text using

RobusTest (default)

_images/Verifyelementexists1.png
Profile Tunes

Categories

_static/executedbquery.png
Execute DB Query

Provider
Oracle

Connection String

‘username/password@db_hostport/db_name

Query

Result Row #

SAVE

CLOSE

_images/Verifyelementexists3.png
Profile Tunes Nam

Categories

_static/file.png

_images/Verifyelementexists2.png
&l
il

] B2
‘%,

Profile Tunes Name{ o * Tes

Categories

Bl e

The music player opens

We need to verify that this player
(its element, actually) exists on
the page

=) Jatt Ludhiyane Da

_static/executerestapi.png
Execute REST API

Request Type

Timeout

SAVE CLOSE

_images/Verifyelementexists5.png
Create Verification

Source

Invert Verification Result

_static/hidekeyboard1.png
mE0O0S 3 W0 @59 H=amQq

— amazonin \Yy O W B ¢ OB AOCYOEB + @ L &
m Hide Keyboard
o
()
3
]

| <«——————— Device Keyboard

_images/Verifyelementexists4.png
Profile Tunes Name{

Categories

_static/hidekeyboard.png
mE0O0S 3 W0 @59 H=amQq

— amazonin \Yy O W B ¢ OB AOCYOEB + @ L &
m Hide Keyboard
o
()
3
]

| <«——————— Device Keyboard

_static/down.png

_static/down-pressed.png

_static/entertext2.png
Enter text

Input text

Enter textusina

RobusTest (default)

Automation Framework

Android Debug Bridge(ADB)
T ———AYECIOSE

_static/entertext1.png
Enter text

Input text

Enter text using

RobusTest (default)

Hide Keyboard after entering text

_static/verifyelement13.png
Create Verification

Target
Atta - Whole Wheat

Tap on ‘Explore Bangalore Store’

O Invert Verification Result

Tap on the 'Search’ option
Tap on the 'Search' text box

Type 'wheat' in the search text field
Hit Enter on the text field

Store name of first item on the search list

SAVE CLOSE

_static/verifyelement15.png
Create Verification

Source
Atta - Whole Wheat
O Invert Verification Result

Source Attribute Conditions

text(Atta - Whol ~ is exactly

Target
Atta - Whole Wheat

Target Attribute

element text(At! ~

(C]

_static/verifyelement14.png
Create Verification

Atta - Whole Wheat

O Invert Verification Result

Source Attribute Conditions

text(Atta - Whol ~ is exactly

Target
Atta - Whole Wheat

Target Attribute

element.enabled(true)
element focusable(true)
element focused(false)
element.scrollable(false)
element.selected(false)

element text(Atta - Whole Wheat)

SAVE CLOSE

_static/up.png

_static/up-pressed.png

_static/uploaddialog1.png
Add your buid to an

Project Name.

Build Name.

Package Name : com.ebay.mobile
Version Name © 4.1.5.22
Version Code : 76

Launch Activity : comebay.mobile activ

Description : Provide description

Note: There are other builds in this project with the same detais
. a combination of version name, version code, activity class and app name
Provide an appropriate build description to identify this build ezsily.

_static/uploaddialog.png
Upload your app

Use Sample App

_static/verifyelement10.png
Wws b@@Y -

Your Location

100 Feet Rd-Koramangala, Bang.

We are seeing a sudden surge in demand because o
of which Express delivery is fully booked and not =)
8

Test Step

available currently.

Save big

[
Place your first order n¢ *
Noowhiors &

Save up 1031000
‘on'your monthly grocery

1o1a 50% 0
B 8 Q @
Home Categores Seach Oflers _ Basket

_static/verifyelement1.png
M2 ba@d -

S L
O OB 4AOQB+ =R

Test Step

Welcome to bigbasket

Product catalogue and offers are location specific

CHOOSE LOCATION

Existing customer?

LOGIN ——— Highlighted element

Explore Bangalore Store

_static/verifyelement12.png
Create Verification

~ Target

O Invert Verification Result

_static/verifyelement11.png
1047 @@ Q 0 v M = , L]
0 & O OB A O QB+ @ L o« =
Test Step
REFERENCES ~ DEPE ’
o
S
-3 tio is exactly

0].source_attribute
Welcome to bigbasket

Product catalogue and offers are location specific 0] target _attribute

CHOOSE LOCATION

MODIFY VERIFICATION
Existing customer?

Details of verification
LOGIN

Explore Bangalore Store

Verification test step

nav.xhtml

 Table of Contents

 		
 Welcome to RobusTest 2.0 Documentation!

 		
 Introduction

 		
 Getting Started

 		
 Project

 		
 Project Dashboard

 		
 Manual Testing

 		
 Device Configuration Menu

 		
 Session Configuration Menu

 		
 Multi-device testing

 		
 Test Embedded Video

 		
 RobusTest Automator

 		
 Recording user actions

 		
 Test Step Management

 		
 Test Session - Device Management

 		
 Test Session - Test Case Management

 		
 Test Session - Session Management

 		
 Creating and Managing Test Cases

 		
 Executing Test Runs

 		
 Understanding Test Suites

 		
 Creating and Executing a Test Run

 		
 Run Settings

 		
 Live View

 		
 Performance Testing

 		
 Automation Reports

 		
 Debugging Test Case Failures

 		
 Advanced Automation Concepts

 		
 Verification

 		
 Using the ‘Verify Element’ option

 		
 Using the ‘Verification’ button option

 		
 Verify that an element exists

 		
 Invert Verification

 		
 Functions

 		
 Parameterisation of Data

 		
 Mapping to Step

 		
 Mapping to Data Set

 		
 Scheduling your tests

 		
 RobusTest Hub

 		
 Appium Hub

 		
 Run Appium Tests

 		
 Organize Appium Sessions Into Test Cases

 		
 Appium Test Data

 		
 Appium Hub to Find Locators

 		
 Running tests for your Unity based app on the RobusTest Hub

 		
 Run Espresso Tests

 		
 Run XCUITest Tests

 		
 Run Selenium Tests

 		
 User Profile

 		
 Health page

 		
 Admin Console

 		
 Continuous Integration

 		
 Integrating Bug Tracker

 		
 Other Useful Information

 		
 Adding new devices to RobusTest - Android

 		
 Adding new devices to RobusTest - iOS

 		
 Best Practices in Automating Tests using RobusTest

 		
 RobusTest Connect - Run local, test global

 		
 Troubleshooting

 		
 Unable to access RobusTest Server

_static/thankyou.png
Great! vouhave succesfully signed up with us.
We have sent you an email with instructions for confirming the account.
Pssst. In case you do not find our email in your inbox, do look in the spam folder.

Getiing started with RobusTest is easy.
We have made it even easier. Click here to watch our feature walkthroughs

_static/Verifyelementexists1.png
Profile Tunes

Categories

_images/verifyelement9.png
Create Verification

Source

LOGIN

Invert Verification Result

Source Attribute Conditions

text(LOGIN) is exactly

Target Attribute

_static/Verifyelementexists3.png
Profile Tunes Nam

Categories

_static/Verifyelementexists2.png
&l
il

] B2
‘%,

Profile Tunes Name{ o * Tes

Categories

Bl e

The music player opens

We need to verify that this player
(its element, actually) exists on
the page

=) Jatt Ludhiyane Da

_images/verifyelement3.png
Create Verification

Target

ADD VERIFICATION STEP

O Invert Verification Result

_static/verifyelement6.png
Create Verification

Invert Verification Result

Source Attribute Conditions

text(LOGIN) is exactly

Target Attribute

no-validation

contains

is contained in

_images/verifyelement23.png
[0 9 @ Verify that the item name displayed is the same Q » 8

BASIC SETTINGS USERDATA RETURNDATA XPATH SCRIPT ~REFERENCES DEPENDENCIES

verifications S
[0].condition is exactly
[0].source_attribute element text

[0].target_attribute element.text

_static/verifyelement5.png
Create Verification

Source

LOGIN Target

Invert Verification Result

Source Attribute Conditions Target Attribute

no-validation ~

resource-id(com bigbasket mobileappid/text_login)

checkable(false)
checked(false)
clickable(true)

enabled(true)

_images/verifyelement5.png
Create Verification

Source

LOGIN Target

Invert Verification Result

Source Attribute Conditions Target Attribute

no-validation ~

resource-id(com bigbasket mobileappid/text_login)

checkable(false)
checked(false)
clickable(true)

enabled(true)

_static/verifyelement8.png
Create Verification

Source

LOGIN

Invert Verification Result

Source Attribute Conditions

text(LOGIN) is exactly

Target

Target Attribute

LOGIN

_images/verifyelement4.png
Create Verification

Target

O Invert Verification Result

Source Attribute Conditions Target Attribute

no-validation ~

_static/verifyelement7.png
Create Verification

Source
LOGIN Target

Invert Verification Result

Source Attribute Conditions Target Attribute

text(LOGIN) is exactly

LOGIN

com bigbasket mobileapp:id/text_login
false

true

15

J/android widget TextView|@resource-id="com bigbasket mobileapp:id/text_login']

_images/verifyelement7.png
Create Verification

Source
LOGIN Target

Invert Verification Result

Source Attribute Conditions Target Attribute

text(LOGIN) is exactly

LOGIN

com bigbasket mobileapp:id/text_login
false

true

15

J/android widget TextView|@resource-id="com bigbasket mobileapp:id/text_login']

_images/verifyelement6.png
Create Verification

Invert Verification Result

Source Attribute Conditions

text(LOGIN) is exactly

Target Attribute

no-validation

contains

is contained in

_static/verifyelement9.png
Create Verification

Source

LOGIN

Invert Verification Result

Source Attribute Conditions

text(LOGIN) is exactly

Target Attribute

_images/verifyelement8.png
Create Verification

Source

LOGIN

Invert Verification Result

Source Attribute Conditions

text(LOGIN) is exactly

Target

Target Attribute

LOGIN

_images/verifyelement20.png
Create Verification

Source Target
Atta - Whole Wheat

Tap on the 'Search' text box

O Invert Verification Result
Type 'wheat' in the search text field
Hit Enter on the text field

Store name of first item on the search list

Tap on the first item on the search list

Store item name

_static/verifyelement23.png
[0 9 @ Verify that the item name displayed is the same Q » 8

BASIC SETTINGS USERDATA RETURNDATA XPATH SCRIPT ~REFERENCES DEPENDENCIES

verifications S
[0].condition is exactly
[0].source_attribute element text

[0].target_attribute element.text

_static/verifyelement22.png
[0 9 @ Verify that the item name displayed is the same

BASIC SETTINGS USERDATA RETURNDATA XPATH SCRIPT ~REFERENCES DEPENDENCIES

® ©

source Store name of first item on the search lis

® ©

target Store item name

_images/verifyelement22.png
[0 9 @ Verify that the item name displayed is the same

BASIC SETTINGS USERDATA RETURNDATA XPATH SCRIPT ~REFERENCES DEPENDENCIES

® ©

source Store name of first item on the search lis

® ©

target Store item name

_static/verifyelement4.png
Create Verification

Target

O Invert Verification Result

Source Attribute Conditions Target Attribute

no-validation ~

_images/verifyelement21.png
Create Verification

Source

Atta - Whole Wheat

O Invert Verification Result

Source Attribute Conditions

element tex(Atta ~ is exactly

Target
Atta - Whole Wheat

Target Attribute

element text(Atta

_static/verifyelement3.png
Create Verification

Target

ADD VERIFICATION STEP

O Invert Verification Result

_static/verifyelement17.png
@ = a = o OO vecma

u
O OB A O Q9B+ @ Ve EBR

= bigbasket 0@ WA 9 @
2 wheat n
Test Step
QUK | poym | Acstirand | Whiskas | Lol e
— [} = 1 @& Tapon Explore Bangalore Store’ a » § v
3705 Items % Express 2 Filter -
. v . FE3
Store item name and click on it =
o = 2 @& Tapon the 'Search’ option a » v
4 Atta - Whole Wheat
& [}
10 kg - Pouch - = 3 @ Taponthe 'Search’ text box a » § -

MRP: R5-440 m 8
Rs 375

L

= 4 @ Type'wheat in the search text field

BB ROYAL
Wheat Sharbati °

Hit Enter on the text field

5kg - Bag v

3 MRP: Rs-300 m

Rs 250

o

= 7 @ Tapon the firstitem on the search list

BB ROYAL
Wheat Broken/Dalia =

88 Q @]

Home Categories Search Offers. Basket

Store item name

o -
I
(]

_static/verifyelement16.png
IITX @ = o« o O vocmas
bigbasket 0 WA 9 @ O OB 4AOQB+ =R
Test Step
QUK | poym | Acstirand | Whiskas | Lol e
- (] = [] 1 @ Tapon Explore Bangalore Store' a » § v
3705 Items % Express o Filter -
o

= 2 @& Tapon the 'Search’ option

AASHIRVAAD
4 Atta - Whole Wheat

10 kg - Pouch = 3 @ Taponthe'Search' textbox

MRP: Rs-446

Rs 375
@ = 4 @ Type wheat in the search text field

BB ROYAL =
Wheat Sharbati 5 @ HitEnteron the text field

5kg - Bag v

MRP: Rs-380 m
Rs 250

= 6 @ Storename of first item on the search list

O]
= 7 @ Tapon the first item on the search list a » v
BB ROYAL
Wheat Broken/Dalia = 6 O G > & -
o0oo
88 Q @
Home Categories Search Offers Basket

_static/verifyelement19.png
Create Verification

+ Target

Tap on the 'Search' text box

Type 'wheat' in the search text field

Hit Enter on the text field

Store name of first item on the search list

Tap on the first item on the search list

Store item name

_static/verifyelement18.png
1226 b @ @O - “Cc e B

u
Atta - Whole Wheat [VENOIN o V-SRI] + @ v« =ER

Test Step

= 1 @ Tapon ‘Explore Bangalore Store’

= 2 @& Tapon the 'Search’ option

= 3 @ Tapon the 'Search’ text box

= [J 4 @ Type wheat in the search text field

= 5 @ Hit Enter on the text field

= 6 @ Storename of first item on the search list

= 7 @ Tapon the firstitem on the search list

Vegetarian
About Ingredients Nutritional Facts ~ Ot Store item name
88 Q @]

Home Categories Search Offers. Basket

_static/verifyelement20.png
Create Verification

Source Target
Atta - Whole Wheat

Tap on the 'Search' text box

O Invert Verification Result
Type 'wheat' in the search text field
Hit Enter on the text field

Store name of first item on the search list

Tap on the first item on the search list

Store item name

_static/verifyelement2.png
M54 b@@Y - e

L -]
O OB 4AOQB+ =R

] 2
"%/
-~

Test Step

Q0 e

Welcome to bigbaskd

Product catalogue and offers are o

CHOOSE LOCATION

Existing customer?

Explore Bangalore Stg

_static/verifyelement21.png
Create Verification

Source

Atta - Whole Wheat

O Invert Verification Result

Source Attribute Conditions

element tex(Atta ~ is exactly

Target
Atta - Whole Wheat

Target Attribute

element text(Atta

_images/verifyelement11.png
1047 @@ Q 0 v M = , L]
0 & O OB A O QB+ @ L o« =
Test Step
REFERENCES ~ DEPE ’
o
S
-3 tio is exactly

0].source_attribute
Welcome to bigbasket

Product catalogue and offers are location specific 0] target _attribute

CHOOSE LOCATION

MODIFY VERIFICATION
Existing customer?

Details of verification
LOGIN

Explore Bangalore Store

Verification test step

_images/verifyelement13.png
Create Verification

Target
Atta - Whole Wheat

Tap on ‘Explore Bangalore Store’

O Invert Verification Result

Tap on the 'Search’ option
Tap on the 'Search' text box

Type 'wheat' in the search text field
Hit Enter on the text field

Store name of first item on the search list

SAVE CLOSE

_images/verifyelement12.png
Create Verification

~ Target

O Invert Verification Result

_images/verifyelement15.png
Create Verification

Source
Atta - Whole Wheat
O Invert Verification Result

Source Attribute Conditions

text(Atta - Whol ~ is exactly

Target
Atta - Whole Wheat

Target Attribute

element text(At! ~

(C]

_images/verifyelement14.png
Create Verification

Atta - Whole Wheat

O Invert Verification Result

Source Attribute Conditions

text(Atta - Whol ~ is exactly

Target
Atta - Whole Wheat

Target Attribute

element.enabled(true)
element focusable(true)
element focused(false)
element.scrollable(false)
element.selected(false)

element text(Atta - Whole Wheat)

SAVE CLOSE

_images/verifyelement17.png
@ = a = o OO vecma

u
O OB A O Q9B+ @ Ve EBR

= bigbasket 0@ WA 9 @
2 wheat n
Test Step
QUK | poym | Acstirand | Whiskas | Lol e
— [} = 1 @& Tapon Explore Bangalore Store’ a » § v
3705 Items % Express 2 Filter -
. v . FE3
Store item name and click on it =
o = 2 @& Tapon the 'Search’ option a » v
4 Atta - Whole Wheat
& [}
10 kg - Pouch - = 3 @ Taponthe 'Search’ text box a » § -

MRP: R5-440 m 8
Rs 375

L

= 4 @ Type'wheat in the search text field

BB ROYAL
Wheat Sharbati °

Hit Enter on the text field

5kg - Bag v

3 MRP: Rs-300 m

Rs 250

o

= 7 @ Tapon the firstitem on the search list

BB ROYAL
Wheat Broken/Dalia =

88 Q @]

Home Categories Search Offers. Basket

Store item name

o -
I
(]

_images/verifyelement16.png
IITX @ = o« o O vocmas
bigbasket 0 WA 9 @ O OB 4AOQB+ =R
Test Step
QUK | poym | Acstirand | Whiskas | Lol e
- (] = [] 1 @ Tapon Explore Bangalore Store' a » § v
3705 Items % Express o Filter -
o

= 2 @& Tapon the 'Search’ option

AASHIRVAAD
4 Atta - Whole Wheat

10 kg - Pouch = 3 @ Taponthe'Search' textbox

MRP: Rs-446

Rs 375
@ = 4 @ Type wheat in the search text field

BB ROYAL =
Wheat Sharbati 5 @ HitEnteron the text field

5kg - Bag v

MRP: Rs-380 m
Rs 250

= 6 @ Storename of first item on the search list

O]
= 7 @ Tapon the first item on the search list a » v
BB ROYAL
Wheat Broken/Dalia = 6 O G > & -
o0oo
88 Q @
Home Categories Search Offers Basket

_images/verifyelement19.png
Create Verification

+ Target

Tap on the 'Search' text box

Type 'wheat' in the search text field

Hit Enter on the text field

Store name of first item on the search list

Tap on the first item on the search list

Store item name

_images/verifyelement18.png
1226 b @ @O - “Cc e B

u
Atta - Whole Wheat [VENOIN o V-SRI] + @ v« =ER

Test Step

= 1 @ Tapon ‘Explore Bangalore Store’

= 2 @& Tapon the 'Search’ option

= 3 @ Tapon the 'Search’ text box

= [J 4 @ Type wheat in the search text field

= 5 @ Hit Enter on the text field

= 6 @ Storename of first item on the search list

= 7 @ Tapon the firstitem on the search list

Vegetarian
About Ingredients Nutritional Facts ~ Ot Store item name
88 Q @]

Home Categories Search Offers. Basket

_images/